scholarly journals A Notch updated

2009 ◽  
Vol 184 (5) ◽  
pp. 621-629 ◽  
Author(s):  
An-Chi Tien ◽  
Akhila Rajan ◽  
Hugo J. Bellen

Cell–cell signaling mediated by the Notch receptor is iteratively involved in numerous developmental contexts, and its dysregulation has been associated with inherited genetic disorders and cancers. The core components of the signaling pathway have been identified for some time, but the study of the modulation of the pathway in different cellular contexts has revealed many layers of regulation. These include complex sugar modifications in the extracellular domain as well as transit of Notch through defined cellular compartments, including specific endosomes.

2017 ◽  
Vol 216 (10) ◽  
pp. 3073-3085 ◽  
Author(s):  
Antonis Kourtidis ◽  
Brian Necela ◽  
Wan-Hsin Lin ◽  
Ruifeng Lu ◽  
Ryan W. Feathers ◽  
...  

Cumulative evidence demonstrates that most RNAs exhibit specific subcellular distribution. However, the mechanisms regulating this phenomenon and its functional consequences are still under investigation. Here, we reveal that cadherin complexes at the apical zonula adherens (ZA) of epithelial adherens junctions recruit the core components of the RNA-induced silencing complex (RISC) Ago2, GW182, and PABPC1, as well as a set of 522 messenger RNAs (mRNAs) and 28 mature microRNAs (miRNAs or miRs), via PLEKHA7. Top canonical pathways represented by these mRNAs include Wnt/β-catenin, TGF-β, and stem cell signaling. We specifically demonstrate the presence and silencing of MYC, JUN, and SOX2 mRNAs by miR-24 and miR-200c at the ZA. PLEKHA7 knockdown dissociates RISC from the ZA, decreases loading of the ZA-associated mRNAs and miRNAs to Ago2, and results in a corresponding increase of MYC, JUN, and SOX2 protein expression. The present work reveals a mechanism that directly links junction integrity to the silencing of a set of mRNAs that critically affect epithelial homeostasis.


2021 ◽  
Vol 93 ◽  
pp. 107278
Author(s):  
Jhonattan Miranda ◽  
Christelle Navarrete ◽  
Julieta Noguez ◽  
José-Martin Molina-Espinosa ◽  
María-Soledad Ramírez-Montoya ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 11
Author(s):  
Clinton Rice ◽  
Oindrila De ◽  
Haifa Alhadyian ◽  
Sonia Hall ◽  
Robert E. Ward

The septate junction (SJ) provides an occluding function for epithelial tissues in invertebrate organisms. This ability to seal the paracellular route between cells allows internal tissues to create unique compartments for organ function and endows the epidermis with a barrier function to restrict the passage of pathogens. Over the past twenty-five years, numerous investigators have identified more than 30 proteins that are required for the formation or maintenance of the SJs in Drosophila melanogaster, and have determined many of the steps involved in the biogenesis of the junction. Along the way, it has become clear that SJ proteins are also required for a number of developmental events that occur throughout the life of the organism. Many of these developmental events occur prior to the formation of the occluding junction, suggesting that SJ proteins possess non-occluding functions. In this review, we will describe the composition of SJs, taking note of which proteins are core components of the junction versus resident or accessory proteins, and the steps involved in the biogenesis of the junction. We will then elaborate on the functions that core SJ proteins likely play outside of their role in forming the occluding junction and describe studies that provide some cell biological perspectives that are beginning to provide mechanistic understanding of how these proteins function in developmental contexts.


2020 ◽  
Vol 15 (1) ◽  
pp. 284-295
Author(s):  
Yongtian Zhang ◽  
Dandan Zhao ◽  
Shumei Li ◽  
Meng Xiao ◽  
Hongjing Zhou ◽  
...  

AbstractMultiple myeloma (MM) is a serious health issue in hematological malignancies. Long non-coding RNA taurine-upregulated gene 1 (TUG1) has been reported to be highly expressed in the plasma of MM patients. However, the functions of TUG1 in MM tumorigenesis along with related molecular basis are still undefined. In this study, increased TUG1 and decreased microRNA-34a-5p (miR-34a-5p) levels in MM tissues and cells were measured by the real-time quantitative polymerase reaction assay. The expression of relative proteins was determined by the Western blot assay. TUG1 knockdown suppressed cell viability, induced cell cycle arrest and cell apoptosis in MM cells, as shown by Cell Counting Kit-8 and flow cytometry assays. Bioinformatics analysis, luciferase reporter assay, and RNA pull-down assay indicated that miR-34a-5p was a target of TUG1 and directly bound to notch receptor 1 (NOTCH1), and TUG1 regulated the NOTCH1 expression by targeting miR-34a-5p. The functions of miR-34a-5p were abrogated by TUG1 upregulation. Moreover, TUG1 loss impeded MM xenograft tumor growth in vivo by upregulating miR-34a-5p and downregulating NOTCH1. Furthermore, TUG1 depletion inhibited the expression of Hes-1, Survivin, and Bcl-2 protein in MM cells and xenograft tumors. TUG1 knockdown inhibited MM tumorigenesis by regulating the miR-34a-5p/NOTCH1 signaling pathway in vitro and in vivo, deepening our understanding of the TUG1 function in MM.


i-com ◽  
2009 ◽  
Vol 8 (3) ◽  
pp. 25-32 ◽  
Author(s):  
Gunnar Aastrand Grimnes ◽  
Benjamin Adrian ◽  
Sven Schwarz ◽  
Heiko Maus ◽  
Kinga Schumacher ◽  
...  

AbstractThis article describes the Semantic Desktop. We give insights into the core services that aim to improve personal knowledge management on the desktop. We describe these core components of our Semantic Desktop system and give evaluation results. Results of a long-term study reveal effects of using the Semantic Desktop on personal knowledge work.


Sign in / Sign up

Export Citation Format

Share Document