scholarly journals A guide to super-resolution fluorescence microscopy

2010 ◽  
Vol 190 (2) ◽  
pp. 165-175 ◽  
Author(s):  
Lothar Schermelleh ◽  
Rainer Heintzmann ◽  
Heinrich Leonhardt

For centuries, cell biology has been based on light microscopy and at the same time been limited by its optical resolution. However, several new technologies have been developed recently that bypass this limit. These new super-resolution technologies are either based on tailored illumination, nonlinear fluorophore responses, or the precise localization of single molecules. Overall, these new approaches have created unprecedented new possibilities to investigate the structure and function of cells.

2019 ◽  
Vol 47 (6) ◽  
pp. 1635-1650 ◽  
Author(s):  
Xiaohong Peng ◽  
Xiaoshuai Huang ◽  
Ke Du ◽  
Huisheng Liu ◽  
Liangyi Chen

Taking advantage of high contrast and molecular specificity, fluorescence microscopy has played a critical role in the visualization of subcellular structures and function, enabling unprecedented exploration from cell biology to neuroscience in living animals. To record and quantitatively analyse complex and dynamic biological processes in real time, fluorescence microscopes must be capable of rapid, targeted access deep within samples at high spatial resolutions, using techniques including super-resolution fluorescence microscopy, light sheet fluorescence microscopy, and multiple photon microscopy. In recent years, tremendous breakthroughs have improved the performance of these fluorescence microscopies in spatial resolution, imaging speed, and penetration. Here, we will review recent advancements of these microscopies in terms of the trade-off among spatial resolution, sampling speed and penetration depth and provide a view of their possible applications.


Acta Naturae ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 42-51
Author(s):  
S. S. Ryabichko ◽  
◽  
A. N. Ibragimov ◽  
L. A. Lebedeva ◽  
E. N. Kozlov ◽  
...  

2016 ◽  
Vol 27 (18) ◽  
pp. 2807-2810 ◽  
Author(s):  
Pierre A. Coulombe

In 1991, a set of transgenic mouse studies took the fields of cell biology and dermatology by storm in providing the first credible evidence that keratin intermediate filaments play a unique and essential role in the structural and mechanical support in keratinocytes of the epidermis. Moreover, these studies intimated that mutations altering the primary structure and function of keratin filaments underlie genetic diseases typified by cellular fragility. This Retrospective on how these studies came to be is offered as a means to highlight the 25th anniversary of these discoveries.


2019 ◽  
Vol 52 (2) ◽  
pp. 345-352
Author(s):  
James E. Strick

What are cells? How are they related to each other and to the organism as a whole? These questions have exercised biology since Schleiden and Schwann (1838–1839) first proposed cells as the key units of structure and function of all living things. But how do we try to understand them? Through new technologies like the achromatic microscope and the electron microscope. But just as importantly, through the metaphors our culture has made available to biologists in different periods and places. These two new volumes provide interesting history and philosophy of the development of cell biology. Reynolds surveys the field's changing conceptual structure by examining the varied panoply of changing metaphors used to conceptualize and explain cells – from cells as empty boxes, as building blocks, to individual organisms, to chemical factories, and through many succeeding metaphors up to one with great currency today: cells as social creatures in communication with others in their community. There is some of this approach in the Visions edited collection as well. But this collection also includes rich material on the technologies used to visualize cells and their dialectical relationship with the epistemology of the emerging distinct discipline of cell biology. This volume centres on, but is not limited to, ‘reflections inspired by [E.V.] Cowdry's [1924 volume] General Cytology’; it benefits from a conference on the Cowdry volume as well as a 2011 Marine Biological Lab/Arizona State University workshop on the history of cell biology.


2020 ◽  
Vol 8 (1) ◽  
pp. 485-496 ◽  
Author(s):  
Vikas Raj Sharma ◽  
Ananya Shrivastava ◽  
Benoit Gallet ◽  
Elizaveta Karepina ◽  
Peggy Charbonnier ◽  
...  

The combined use of light sheet fluorescence microscopy and 3D electron microscopy enables to reveal the fine details of bile canaliculi structure and function in matrix-free hepatic spheroids.


1984 ◽  
Vol 246 (2) ◽  
pp. R133-R151 ◽  
Author(s):  
J. S. Clegg

The nucleoplasm, the interiors of cytoplasmic membrane-bound organelles, and the aqueous cytoplasm make up the aqueous compartments of animal cells. The extent to which these compartments are concentrated solutions of macromolecules, metabolites, ions, and other solutes is a matter of some importance to current thinking about cell structure and function. This paper will focus on the aqueous cytoplasm. It will show that the composition and metabolic activities of the cytosol, obtained by methods of cell disruption and fractionation, bear almost no resemblance to those of the aqueous cytoplasm in intact cells. The consequences of this to contemporary views on cell structure and function are considered. A closely related topic concerns the physical properties of the dominant component of these compartments, water: Are these properties the same as those of water in aqueous solutions, or are they altered as a result of interaction with cell architecture? Available evidence strongly suggests that at least a large fraction of the total cell water exhibits properties that markedly differ from those of pure water. Selected examples of these studies will be reviewed, and the roles of cell water will be discussed, notably as they relate to metabolism and cell ultrastructure. Although dimly perceived at present, it appears that living cells exhibit an organization far greater than the current teachings of cell biology reveal.


1984 ◽  
Vol 99 (1) ◽  
pp. 167s-171s ◽  
Author(s):  
J S Clegg

The extent to which the properties of water in cells are like those of water in dilute aqueous solutions is a question of broad significance to cell biology. A detailed answer is not available at present, although evidence is accumulating that the properties of at least a large fraction of intracellular water are altered by interactions with cell ultrastructure, notably the cytomatrix. That and related evidence also suggests that the properties, composition, and activities of the "aqueous cytoplasm" of intact cells bear little resemblance to those of the "cytosol" obtained by cell fractionation. This paper will consider some of the evidence for these possibilities and some of their potential consequences with regard to cellular structure and function.


Author(s):  
Eve S. Wurtele ◽  
Diane C. Bassham ◽  
Julie Dickerson ◽  
David J. Kabala ◽  
William Schneller ◽  
...  

Knowledge of cellular structure and function has increased dramatically with the advent of modern molecular and computational technologies. Helping students to understand cellular dynamics is a major challenge to educators. To address this challenge, we have developed the Kabala Engine, an open source engine based on OpenSG (http://www.opensg.org) and VRJuggler (http://www.vrjuggler.org). This engine is designed to enable biologists, and indeed any domain expert — chemists, artists, psychologists — to create virtual interactive worlds for teaching or research. As a proof-of-concept, we have used this engine to create Meta!Blast, a virtual plant cell containing a prototype chloroplast in which students can enter, activate the light reactions, including electron excitation, and create molecular oxygen and ATP.


2021 ◽  
Vol 17 (2) ◽  
pp. 225-241
Author(s):  
Mai Lill Suhr Lunde ◽  
Tone Fredsvik Gregers

This study aimed to investigate Norwegian eighth-grade students’ preconceptions of cells, the development of their understanding of cellular structure and function during cell biology instruction, and their understanding of the cell as a system. We conducted pre- and posttests including drawings, images and statements with 28 students. Our findings indicate that most students had a simplified view of cells prior to instruction but developed significant knowledge about cellular structures and different types of cells during instruction. However, several misconceptions arose, and some students seemed to alter their correct preconceptions. This suggests that teachers need to address misconceptions during instruction and support integration of students’ previous and new knowledge. Additionally, we suggest that focusing on numerous structures and cells from different organisms confuses students and complicates the process of achieving a systemic view of the cell.


Sign in / Sign up

Export Citation Format

Share Document