scholarly journals Injury-induced BMP signaling negatively regulates Drosophila midgut homeostasis

2013 ◽  
Vol 201 (6) ◽  
pp. 945-961 ◽  
Author(s):  
Zheng Guo ◽  
Ian Driver ◽  
Benjamin Ohlstein

Although much is known about injury-induced signals that increase rates of Drosophila melanogaster midgut intestinal stem cell (ISC) proliferation, it is largely unknown how ISC activity returns to quiescence after injury. In this paper, we show that the bone morphogenetic protein (BMP) signaling pathway has dual functions during midgut homeostasis. Constitutive BMP signaling pathway activation in the middle midgut mediated regional specification by promoting copper cell differentiation. In the anterior and posterior midgut, injury-induced BMP signaling acted autonomously in ISCs to limit proliferation and stem cell number after injury. Loss of BMP signaling pathway members in the midgut epithelium or loss of the BMP signaling ligand decapentaplegic from visceral muscle resulted in phenotypes similar to those described for juvenile polyposis syndrome, a human intestinal tumor caused by mutations in BMP signaling pathway components. Our data establish a new link between injury and hyperplasia and may provide insight into how BMP signaling mutations drive formation of human intestinal cancers.

2017 ◽  
Vol 114 (13) ◽  
pp. E2699-E2708 ◽  
Author(s):  
Aiguo Tian ◽  
Bing Wang ◽  
Jin Jiang

Many adult organs rely on resident stem cells to maintain homeostasis. Upon injury, stem cells increase proliferation, followed by lineage differentiation to replenish damaged cells. Whether stem cells also change division mode to transiently increase their population size as part of a regenerative program and, if so, what the underlying mechanism is have remained largely unexplored. Here we show that injury stimulates the production of two bone morphogenetic protein (BMP) ligands, Dpp and Gbb, which drive an expansion of intestinal stem cells (ISCs) by promoting their symmetric self-renewing division in Drosophila adult midgut. We find that BMP production in enterocytes is inhibited by BMP signaling itself, and that BMP autoinhibition is required for resetting ISC pool size to the homeostatic level after tissue repair. Our study suggests that dynamic BMP signaling controls ISC population size during midgut regeneration and reveals mechanisms that precisely control stem cell number in response to tissue needs.


2020 ◽  
Vol 10 (12) ◽  
pp. 1884-1890
Author(s):  
Jing Tian ◽  
Qianying Zhao ◽  
Dapeng Zhou ◽  
Bing Xie

The balance of osteoblasts and osteoclasts is critical for bone formation and remodeling and imbalance causes osteoporosis (OP). TGF-β regulates bone tissue repair and regeneration, but TGF-β’s role in osteogenesis in OP has not been elucidated. OVX-induced OP rat models were constructed and rat BMSCs were isolated and assigned into control group, OP group, and TGF-β group (transfected with TGF-β1 plasmid followed by analysis of cell proliferation by MTT assay, RUNX2 and OPN expression by Real time PCR, ALP activity and secretion of TGF-β, BMP-2 and BMP-9 by ELISA. In addition, RANKL was added to induce BMSCs differentiation into to osteoclasts which were transfected with TGF-β1 followed by analysis of cell proliferation, c-Fos and TRAP expression and secretion of BMP-2 and BMP-9. OP group rats had significantly reduced secretion of TGF-β1, BMP-2 and BMP-9, reduced cell proliferation, decreased RUNX2 and OPN expression and ALP activity (P <0.05). Transfection of TGF-β1 in BMSCs of OP group rats could significantly reverse the above changes (P <0.05). TGF-β1 significantly inhibited osteoclast proliferation, decreased expression of c-Fos and TRAP, and increased secretion of BMP-2 and BMP-9 (P <0.05). TGF-β1 level in OP is decreased. Up-regulating TGF-β promotes osteoblast differentiation in OP rats by regulating BMP signaling pathway, and inhibits osteoclast proliferation and differentiation.


2019 ◽  
Vol 218 (11) ◽  
pp. 3773-3794
Author(s):  
Ling Guo ◽  
Rong Wang ◽  
Kuo Zhang ◽  
Jifan Yuan ◽  
Jiaxin Wang ◽  
...  

Mechano-environment plays multiple critical roles in the control of mesenchymal stem cell (MSC) fate decision, but the underlying signaling mechanisms remain undefined. We report here a signaling axis consisting of PINCH-1, SMAD specific E3 ubiquitin protein ligase 1 (Smurf1), and bone morphogenetic protein type 2 receptor (BMPR2) that links mechano-environment to MSC fate decision. PINCH-1 interacts with Smurf1, which inhibits the latter from interacting with BMPR2 and consequently suppresses BMPR2 degradation, resulting in augmented BMP signaling and MSC osteogenic differentiation (OD). Extracellular matrix (ECM) stiffening increases PINCH-1 level and consequently activates this signaling axis. Depletion of PINCH-1 blocks stiff ECM-induced BMP signaling and OD, whereas overexpression of PINCH-1 overrides signals from soft ECM and promotes OD. Finally, perturbation of either Smurf1 or BMPR2 expression is sufficient to block the effects of PINCH-1 on BMP signaling and MSC fate decision. Our findings delineate a key signaling mechanism through which mechano-environment controls BMPR2 level and MSC fate decision.


2006 ◽  
Vol 174 (1) ◽  
pp. 101-113 ◽  
Author(s):  
Lisa M. Hoffman ◽  
Kamal Garcha ◽  
Konstantina Karamboulas ◽  
Matthew F. Cowan ◽  
Linsay M. Drysdale ◽  
...  

The bone morphogenetic protein (BMP) and growth and differentiation factor (GDF) signaling pathways have well-established and essential roles within the developing skeleton in coordinating the formation of cartilaginous anlagen. However, the identification of bona fide targets that underlie the action of these signaling molecules in chondrogenesis has remained elusive. We have identified the gene for the retinoic acid (RA) synthesis enzyme Aldh1a2 as a principal target of BMP signaling; prochondrogenic BMPs or GDFs lead to attenuation of Aldh1a2 expression and, consequently, to reduced activation of the retinoid signaling pathway. Consistent with this, antagonism of retinoid signaling phenocopies BMP4 action, whereas RA inhibits the chondrogenic stimulatory activity of BMP4. BMP4 also down-regulates Aldh1a2 expression in organ culture and, consistent with this, Aldh1a2 is actively excluded from the developing cartilage anlagens. Collectively, these findings provide novel insights into BMP action and demonstrate that BMP signaling governs the fate of prechondrogenic mesenchyme, at least in part, through regulation of retinoid signaling.


2018 ◽  
Vol 19 (11) ◽  
pp. 3525 ◽  
Author(s):  
Jian Peng ◽  
Zheng Li ◽  
Yan Yang ◽  
Peng Wang ◽  
Xuan Zhou ◽  
...  

The fat body plays key roles in energy storage and utilization as well as biosynthetic and metabolic activities in insects. During metamorphosis from larva to pupa, the fat body undergoes dramatic changes in morphology and metabolic processes. However, the genetic basis underlying these changes has not been completely understood. In this study, the authors performed a time-course transcriptome analysis of the fat body during silkworm metamorphosis using RNA-sequencing. A total of 5217 differentially expressed genes (DEGs) were identified in the fat body at different developmental time points. DEGs involved in lipid synthesis and degradation were highly expressed at the third day of the last larval instar and during the prepupal-pupal transition, respectively. DEGs involved in the ecdysone signaling and bone morphogenetic protein (BMP) signaling pathways that modulate organ development exhibited a high expression level during the fat body remodeling process from prepupa to pupa. Intriguingly, the RNA interference-mediated knockdown of either decapentaplegic (Dpp) or protein 60A (Gbb), two DEGs involved in the BMP signaling pathway, inhibited fat body dissociation but promoted lipid mobilization, suggesting that the BMP signaling pathway not only is required for fat body remodeling, but also moderately inhibits lipid mobilization to ensure an appropriate lipid supply during the pupal-adult transition. In conclusion, the comparative transcriptome analysis provides novel insight into morphologic and metabolic changes in the fat body during silkworm metamorphosis.


2012 ◽  
Vol 287 (46) ◽  
pp. 38656-38664 ◽  
Author(s):  
Hara Kang ◽  
Justin Louie ◽  
Alexandra Weisman ◽  
Jessica Sheu-Gruttadauria ◽  
Brandi N. Davis-Dusenbery ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Da Jin Sol Jung ◽  
Myunggi Baik

AbstractWe evaluated whether castration affects bone morphogenetic protein 2 (BMP2) level and the expression of its signaling molecules in Korean cattle bulls. We also checked whether castration affects the expression of muscle fiber type and oxidative and glycolytic enzyme genes. Enzyme-linked immunosorbent assays revealed that steers had higher plasma BMP2 and leptin concentrations than bulls. Quantitative real-time PCR showed that steers had higher mRNA levels of the lysyl oxidase gene, a downstream target of the BMP signaling pathway, in the longissimus thoracis (LT) muscle. Steers had higher adipogenic peroxisome proliferator-activated receptor gamma and lipogenic fatty acid binding protein 4 mRNA levels in the LT than bulls. Steers had lower mRNA levels for several muscle fiber type 1 genes and fiber type 2A myosin heavy chain 2 gene than bulls. Steers had higher mRNA levels of the glycolytic enzyme phosphoglycerate kinase 1 gene than bulls. Transcript levels of oxidative enzyme genes did not differ between bulls and steers. Regression analysis revealed a positive association between plasma BMP2 levels and intramuscular fat (IMF) content in the steer group. These findings suggest that upregulation of the BMP signaling pathway in response to castration induces increased adipogenic gene expression, contributing to the increased IMF deposition observed in castrated animals.


2013 ◽  
Vol 203 (2) ◽  
pp. 345-357 ◽  
Author(s):  
Catherine E. Winbanks ◽  
Justin L. Chen ◽  
Hongwei Qian ◽  
Yingying Liu ◽  
Bianca C. Bernardo ◽  
...  

Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders.


Sign in / Sign up

Export Citation Format

Share Document