scholarly journals Drebrin contains a cryptic F-actin–bundling activity regulated by Cdk5 phosphorylation

2013 ◽  
Vol 202 (5) ◽  
pp. 793-806 ◽  
Author(s):  
Daniel C. Worth ◽  
Catherine N. Daly ◽  
Sara Geraldo ◽  
Fazal Oozeer ◽  
Phillip R. Gordon-Weeks

Drebrin is an actin filament (F-actin)–binding protein with crucial roles in neuritogenesis and synaptic plasticity. Drebrin couples dynamic microtubules to F-actin in growth cone filopodia via binding to the microtubule-binding +TIP protein EB3 and organizes F-actin in dendritic spines. Precisely how drebrin interacts with F-actin and how this is regulated is unknown. We used cellular and in vitro assays with a library of drebrin deletion constructs to map F-actin binding sites. We discovered two domains in the N-terminal half of drebrin—a coiled-coil domain and a helical domain—that independently bound to F-actin and cooperatively bundled F-actin. However, this activity was repressed by an intramolecular interaction relieved by Cdk5 phosphorylation of serine 142 located in the coiled-coil domain. Phospho-mimetic and phospho-dead mutants of serine 142 interfered with neuritogenesis and coupling of microtubules to F-actin in growth cone filopodia. These findings show that drebrin contains a cryptic F-actin–bundling activity regulated by phosphorylation and provide a mechanistic model for microtubule–F-actin coupling.

2002 ◽  
Vol 159 (6) ◽  
pp. 993-1004 ◽  
Author(s):  
Christine L. Humphries ◽  
Heath I. Balcer ◽  
Jessica L. D'Agostino ◽  
Barbara Winsor ◽  
David G. Drubin ◽  
...  

Mechanisms for activating the actin-related protein 2/3 (Arp2/3) complex have been the focus of many recent studies. Here, we identify a novel mode of Arp2/3 complex regulation mediated by the highly conserved actin binding protein coronin. Yeast coronin (Crn1) physically associates with the Arp2/3 complex and inhibits WA- and Abp1-activated actin nucleation in vitro. The inhibition occurs specifically in the absence of preformed actin filaments, suggesting that Crn1 may restrict Arp2/3 complex activity to the sides of filaments. The inhibitory activity of Crn1 resides in its coiled coil domain. Localization of Crn1 to actin patches in vivo and association of Crn1 with the Arp2/3 complex also require its coiled coil domain. Genetic studies provide in vivo evidence for these interactions and activities. Overexpression of CRN1 causes growth arrest and redistribution of Arp2 and Crn1p into aberrant actin loops. These defects are suppressed by deletion of the Crn1 coiled coil domain and by arc35-26, an allele of the p35 subunit of the Arp2/3 complex. Further in vivo evidence that coronin regulates the Arp2/3 complex comes from the observation that crn1 and arp2 mutants display an allele-specific synthetic interaction. This work identifies a new form of regulation of the Arp2/3 complex and an important cellular function for coronin.


FEBS Letters ◽  
2002 ◽  
Vol 516 (1-3) ◽  
pp. 58-62 ◽  
Author(s):  
Paul A Steimle ◽  
Lucila Licate ◽  
Graham P Côté ◽  
Thomas T Egelhoff

2006 ◽  
Vol 17 (11) ◽  
pp. 4720-4735 ◽  
Author(s):  
Alistair N. Hume ◽  
Abul K. Tarafder ◽  
José S. Ramalho ◽  
Elena V. Sviderskaya ◽  
Miguel C. Seabra

Melanophilin (Mlph) regulates retention of melanosomes at the peripheral actin cytoskeleton of melanocytes, a process essential for normal mammalian pigmentation. Mlph is proposed to be a modular protein binding the melanosome-associated protein Rab27a, Myosin Va (MyoVa), actin, and microtubule end-binding protein (EB1), via distinct N-terminal Rab27a-binding domain (R27BD), medial MyoVa-binding domain (MBD), and C-terminal actin-binding domain (ABD), respectively. We developed a novel melanosome transport assay using a Mlph-null cell line to study formation of the active Rab27a:Mlph:MyoVa complex. Recruitment of MyoVa to melanosomes correlated with rescue of melanosome transport and required intact R27BD together with MBD exon F–binding region (EFBD) and unexpectedly a potential coiled-coil forming sequence within ABD. In vitro binding studies indicate that the coiled-coil region enhances binding of MyoVa by Mlph MBD. Other regions of Mlph reported to interact with MyoVa globular tail, actin, or EB1 are not essential for melanosome transport rescue. The strict correlation between melanosomal MyoVa recruitment and rescue of melanosome distribution suggests that stable interaction with Mlph and MyoVa activation are nondissociable events. Our results highlight the importance of the coiled-coil region together with R27BD and EFBD regions of Mlph in the formation of the active melanosomal Rab27a-Mlph-MyoVa complex.


1999 ◽  
Vol 147 (6) ◽  
pp. 1275-1286 ◽  
Author(s):  
Conrad L. Leung ◽  
Dongming Sun ◽  
Min Zheng ◽  
David R. Knowles ◽  
Ronald K.H. Liem

We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends–PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH2 terminus. However, unlike dystonin, mACF7 does not contain a coiled–coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest–specific protein, Gas2. In this paper, we demonstrate that the NH2-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons.


1998 ◽  
Vol 9 (6) ◽  
pp. 1235-1252 ◽  
Author(s):  
Owais Saifee ◽  
Liping Wei ◽  
Michael L. Nonet

We describe the molecular cloning and characterization of theunc-64 locus of Caenorhabditis elegans. unc-64 expresses three transcripts, each encoding a molecule with 63–64% identity to human syntaxin 1A, a membrane- anchored protein involved in synaptic vesicle fusion. Interestingly, the alternative forms of syntaxin differ only in their C-terminal hydrophobic membrane anchors. The forms are differentially expressed in neuronal and secretory tissues; genetic evidence suggests that these forms are not functionally equivalent. A complete loss-of-function mutation in unc-64 results in a worm that completes embryogenesis, but arrests development shortly thereafter as a paralyzed L1 larva, presumably as a consequence of neuronal dysfunction. The severity of the neuronal phenotypes of C. elegans syntaxin mutants appears comparable to those ofDrosophila syntaxin mutants. However, nematode syntaxin appears not to be required for embryonic development, for secretion of cuticle from the hypodermis, or for the function of muscle, in contrast to Drosophila syntaxin, which appears to be required in all cells. Less severe viable unc-64 mutants exhibit a variety of behavioral defects and show strong resistance to the acetylcholinesterase inhibitor aldicarb. Extracellular physiological recordings from pharyngeal muscle of hypomorphic mutants show alterations in the kinetics of transmitter release. The lesions in the hypomorphic alleles map to the hydrophobic face of the H3 coiled-coil domain of syntaxin, a domain that in vitro mediates physical interactions with similar coiled-coil domains in SNAP-25 and synaptobrevin. Furthermore, the unc-64 syntaxin mutants exhibit allele-specific genetic interactions with mutants carrying lesions in the coiled-coil domain of synaptobrevin, providing in vivo evidence for the significance of these domains in regulating synaptic vesicle fusion.


2002 ◽  
Vol 115 (15) ◽  
pp. 3207-3222 ◽  
Author(s):  
Yen-Yi Zhen ◽  
Thorsten Libotte ◽  
Martina Munck ◽  
Angelika A. Noegel ◽  
Elena Korenbaum

NUANCE (NUcleus and ActiN Connecting Element) was identified as a novel protein with an α-actinin-like actin-binding domain. A human 21.8 kb cDNA of NUANCE spreads over 373 kb on chromosome 14q22.1-q22.3. The cDNA sequence predicts a 796 kDa protein with an N-terminal actin-binding domain, a central coiled-coil rod domain and a predicted C-terminal transmembrane domain. High levels of NUANCE mRNA were detected in the kidney, liver,stomach, placenta, spleen, lymphatic nodes and peripheral blood lymphocytes. At the subcellular level NUANCE is present predominantly at the outer nuclear membrane and in the nucleoplasm. Domain analysis shows that the actin-binding domain binds to Factin in vitro and colocalizes with the actin cytoskeleton in vivo as a GFP-fusion protein. The C-terminal transmembrane domain is responsible for the targeting the nuclear envelope. Thus, NUANCE is the firstα-actinin-related protein that has the potential to link the microfilament system with the nucleus.


2021 ◽  
Author(s):  
YUANWEI FAN ◽  
Natasha Bilkey ◽  
Ram Dixit

Accruing evidence points to the control of microtubule minus-end dynamics as being crucial for the spatial arrangement and function of the microtubule cytoskeleton. In plants, the SPIRAL2 (SPR2) protein has emerged as a microtubule minus-end regulator that is structurally distinct from the animal minus-end regulators. Previously, SPR2 was shown to autonomously localize to microtubule minus ends and decrease their depolymerization rate. Here, we used in vitro and in planta experiments to identify the structural determinants required for SPR2 to recognize and stabilize microtubule minus ends. We show that SPR2 contains a single N-terminal TOG domain that binds to soluble tubulin. The TOG domain, a basic region, and coiled-coil domain are necessary and sufficient to target and stabilize microtubule minus ends. We demonstrate that the coiled-coil domain mediates multimerization of SPR2 that provides avidity for microtubule binding and is essential for binding to soluble tubulin. While TOG domain-containing proteins are traditionally thought to function as microtubule plus-end regulators, our results reveal that nature has repurposed the TOG domain of SPR2 to regulate microtubule minus ends.


1999 ◽  
Vol 19 (12) ◽  
pp. 8335-8343 ◽  
Author(s):  
Haiyun Cheng ◽  
Jim A. Rogers ◽  
Nancy A. Dunham ◽  
Thomas E. Smithgall

ABSTRACT The cytoplasmic protein-tyrosine kinase Fes has been implicated in cytokine signal transduction, hematopoiesis, and embryonic development. Previous work from our laboratory has shown that active Fes exists as a large oligomeric complex in vitro. However, when Fes is expressed in mammalian cells, its kinase activity is tightly repressed. The Fes unique N-terminal sequence has two regions with strong homology to coiled-coil-forming domains often found in oligomeric proteins. Here we show that disruption or deletion of the first coiled-coil domain upregulates Fes tyrosine kinase and transforming activities in Rat-2 fibroblasts and enhances Fes differentiation-inducing activity in myeloid leukemia cells. Conversely, expression of a Fes truncation mutant consisting only of the unique N-terminal domain interfered with Rat-2 fibroblast transformation by an activated Fes mutant, suggesting that oligomerization is essential for Fes activation in vivo. Coexpression with the Fes N-terminal region did not affect the transforming activity of v-Src in Rat-2 cells, arguing against a nonspecific suppressive effect. Taken together, these findings suggest a model in which Fes activation may involve coiled-coil-mediated interconversion of monomeric and oligomeric forms of the kinase. Mutation of the first coiled-coil domain may activate Fes by disturbing intramolecular coiled-coil interaction, allowing for oligomerization via the second coiled-coil domain. Deletion of the second coiled-coil domain blocks fibroblast transformation by an activated form of c-Fes, consistent with this model. These results provide the first evidence for regulation of a nonreceptor protein-tyrosine kinase by coiled-coil domains.


2015 ◽  
Vol 26 (8) ◽  
pp. 1491-1508 ◽  
Author(s):  
Robin Beaven ◽  
Nikola S. Dzhindzhev ◽  
Yue Qu ◽  
Ines Hahn ◽  
Federico Dajas-Bailador ◽  
...  

Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end–tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain–containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin–dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons.


2019 ◽  
Author(s):  
Tiantian Wu ◽  
Yi Lu ◽  
Orit Gutman ◽  
Huasong Lu ◽  
Qiang Zhou ◽  
...  

AbstractTAZ promotes cell proliferation, development, and tumorigenesis by regulating target gene transcription. However, how TAZ orchestrates the transcriptional responses remains poorly defined. Here we demonstrate that TAZ forms nuclear condensates via liquid-liquid phase separation to compartmentalize its DNA binding co-factor TEAD4, the transcription co-activators BRD4 and MED1 and the transcription elongation factor CDK9 for activation of gene expression. TAZ, but not its paralog YAP, forms phase-separated droplets in vitro and liquid-like nuclear condensates in vivo, and this ability is negatively regulated by Hippo signaling via LATS-mediated phosphorylation and mediated by the coiled-coil domain. Deletion of the TAZ coiled-coil domain or substitution with the YAP coiled-coil domain does not affect the interaction of TAZ with its partners, but prevents its phase separation and more importantly, its ability to induce target gene expression. Thus, our study identifies a novel mechanism for the transcriptional activation by TAZ and demonstrates for the first time that pathway-specific transcription factors also engage the phase separation mechanism for efficient transcription activation.


Sign in / Sign up

Export Citation Format

Share Document