scholarly journals Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin

2014 ◽  
Vol 206 (5) ◽  
pp. 655-670 ◽  
Author(s):  
Ghazaleh Ashrafi ◽  
Julia S. Schlehe ◽  
Matthew J. LaVoie ◽  
Thomas L. Schwarz

To minimize oxidative damage to the cell, malfunctioning mitochondria need to be removed by mitophagy. In neuronal axons, mitochondrial damage may occur in distal regions, far from the soma where most lysosomal degradation is thought to occur. In this paper, we report that PINK1 and Parkin, two Parkinson’s disease–associated proteins, mediate local mitophagy of dysfunctional mitochondria in neuronal axons. To reduce cytotoxicity and mimic physiological levels of mitochondrial damage, we selectively damaged a subset of mitochondria in hippocampal axons. Parkin was rapidly recruited to damaged mitochondria in axons followed by formation of LC3-positive autophagosomes and LAMP1-positive lysosomes. In PINK1−/− axons, damaged mitochondria did not accumulate Parkin and failed to be engulfed in autophagosomes. Similarly, initiation of mitophagy was blocked in Parkin−/− axons. Our findings demonstrate that the PINK1–Parkin-mediated pathway is required for local mitophagy in distal axons in response to focal damage. Local mitophagy likely provides rapid neuroprotection against oxidative stress without a requirement for retrograde transport to the soma.

1992 ◽  
Vol 32 (S1) ◽  
pp. S111-S115 ◽  
Author(s):  
Donato A. Di Monte ◽  
Piu Chan ◽  
Martha S. Sandy

2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Yihui Xu ◽  
Wei Lin ◽  
Shuifen Ye ◽  
Huajin Wang ◽  
Tingting Wang ◽  
...  

Oxidative damage plays a critical role in the etiology of neurodegenerative disorders including Parkinson’s disease (PD). In our study, an ancient Chinese kidney-tonifying formula, which consists ofCistanche,Epimedii,andPolygonatum cirrhifolium, was investigated to protect MES23.5 dopaminergic neurons against hydrogen peroxide- (H2O2-) induced oxidative damage. The damage effects of H2O2on MES23.5 cells and the protective effects of KTF against oxidative stress were evaluated using MTT assay, transmission electron microscopy (TEM), immunocytochemistry (ICC), enzyme-linked immunosorbent assay (ELISA), and immunoblotting. The results showed that cell viability was dramatically decreased after a 12 h exposure to 150 μM H2O2. TEM observation found that the H2O2-treated MES23.5 cells presented cellular organelle damage. However, when cells were incubated with KTF (3.125, 6.25, and 12.5 μg/ml) for 24 h after H2O2exposure, a significant protective effect against H2O2-induced damage was observed in MES23.5 cells. Using ICC, we found that KTF inhibited the reduction of the tyrosine hydroxylase (TH) induced by H2O2, upregulated the mRNA and protein expression of HO-1, CAT, and GPx-1, and downregulated the expression of caspase 3. These results indicated that KTF may provide neuron protection against H2O2-induced cell damage through ameliorating oxidative stress, and our findings provide a new potential strategy for the prevention and treatment of Parkinson’s disease.


2019 ◽  
Vol 30 (7) ◽  
pp. 729-742 ◽  
Author(s):  
Anthea Di Rita ◽  
Flavie Strappazzon

Abstract During aging, the process of mitophagy, a system that allows the removal of dysfunctional mitochondria through lysosomal degradation, starts to malfunction. Because of this defect, damaged mitochondria are not removed correctly, and their decomposing components accumulate inside the cells. Dysfunctional mitochondria that are not removed by mitophagy produce high amounts of reactive oxygen species (ROS) and, thus, cause oxidative stress. Oxidative stress, in turn, is very harmful for the cells, neuronal cells, in particular. Consequently, the process of mitophagy plays a crucial role in mitochondria-related disease. Mitochondrial dysfunctions and oxidative stress are well-established factors contributing to Parkinson’s disease (PD), one of the most common neurodegenerative disorders. In this review, we report various known antioxidants for PD treatments and describe the stimulation of mitophagy process as a novel and exciting method for reducing oxidative stress in PD patients. We describe the different mechanisms responsible for mitochondria removal through the mitophagy process. In addition, we review the functional connection between mitophagy induction and reduction of oxidative stress in several in vitro models of PD and also agents (drugs and natural compounds) already known to be antioxidants and to be able to activate mitophagy. Finally, we propose that there is an urgent need to test the use of mitophagy-inducing antioxidants in order to fight PD.


2012 ◽  
Vol 11 (4) ◽  
pp. 430-438 ◽  
Author(s):  
Marcella Reale ◽  
Mirko Pesce ◽  
Medha Priyadarshini ◽  
Mohammad A Kamal ◽  
Antonia Patruno

2021 ◽  
Vol 22 (9) ◽  
pp. 4676
Author(s):  
Katja Badanjak ◽  
Sonja Fixemer ◽  
Semra Smajić ◽  
Alexander Skupin ◽  
Anne Grünewald

With the world’s population ageing, the incidence of Parkinson’s disease (PD) is on the rise. In recent years, inflammatory processes have emerged as prominent contributors to the pathology of PD. There is great evidence that microglia have a significant neuroprotective role, and that impaired and over activated microglial phenotypes are present in brains of PD patients. Thereby, PD progression is potentially driven by a vicious cycle between dying neurons and microglia through the instigation of oxidative stress, mitophagy and autophagy dysfunctions, a-synuclein accumulation, and pro-inflammatory cytokine release. Hence, investigating the involvement of microglia is of great importance for future research and treatment of PD. The purpose of this review is to highlight recent findings concerning the microglia-neuronal interplay in PD with a focus on human postmortem immunohistochemistry and single-cell studies, their relation to animal and iPSC-derived models, newly emerging technologies, and the resulting potential of new anti-inflammatory therapies for PD.


2015 ◽  
Vol 9 ◽  
Author(s):  
Javier Blesa ◽  
Ines Trigo-Damas ◽  
Anna Quiroga-Varela ◽  
Vernice R. Jackson-Lewis

Sign in / Sign up

Export Citation Format

Share Document