scholarly journals Protective Effects of an Ancient Chinese Kidney-Tonifying Formula against H2O2-Induced Oxidative Damage to MES23.5 Cells

2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Yihui Xu ◽  
Wei Lin ◽  
Shuifen Ye ◽  
Huajin Wang ◽  
Tingting Wang ◽  
...  

Oxidative damage plays a critical role in the etiology of neurodegenerative disorders including Parkinson’s disease (PD). In our study, an ancient Chinese kidney-tonifying formula, which consists ofCistanche,Epimedii,andPolygonatum cirrhifolium, was investigated to protect MES23.5 dopaminergic neurons against hydrogen peroxide- (H2O2-) induced oxidative damage. The damage effects of H2O2on MES23.5 cells and the protective effects of KTF against oxidative stress were evaluated using MTT assay, transmission electron microscopy (TEM), immunocytochemistry (ICC), enzyme-linked immunosorbent assay (ELISA), and immunoblotting. The results showed that cell viability was dramatically decreased after a 12 h exposure to 150 μM H2O2. TEM observation found that the H2O2-treated MES23.5 cells presented cellular organelle damage. However, when cells were incubated with KTF (3.125, 6.25, and 12.5 μg/ml) for 24 h after H2O2exposure, a significant protective effect against H2O2-induced damage was observed in MES23.5 cells. Using ICC, we found that KTF inhibited the reduction of the tyrosine hydroxylase (TH) induced by H2O2, upregulated the mRNA and protein expression of HO-1, CAT, and GPx-1, and downregulated the expression of caspase 3. These results indicated that KTF may provide neuron protection against H2O2-induced cell damage through ameliorating oxidative stress, and our findings provide a new potential strategy for the prevention and treatment of Parkinson’s disease.

2019 ◽  
Vol 20 (7) ◽  
pp. 1538 ◽  
Author(s):  
Hayate Javed ◽  
Sheikh Azimullah ◽  
MF Meeran ◽  
Suraiya Ansari ◽  
Shreesh Ojha

Parkinson’s disease (PD), a multifactorial movement disorder that involves progressive degeneration of the nigrostriatal system affecting the movement ability of the patient. Oxidative stress and neuroinflammation both are shown to be involved in the etiopathogenesis of PD. The aim of this study was to evaluate the therapeutic potential of thymol, a dietary monoterpene phenol in rotenone (ROT)-induced neurodegeneration in rats that precisely mimics PD in humans. Male Wistar rats were injected ROT at a dose of 2.5 mg/kg body weight for 4 weeks, to induce PD. Thymol was co-administered for 4 weeks at a dose of 50 mg/kg body weight, 30 min prior to ROT injection. The markers of dopaminergic neurodegeneration, oxidative stress and inflammation were estimated using biochemical assays, enzyme-linked immunosorbent assay, western blotting and immunocytochemistry. ROT challenge increased the oxidative stress markers, inflammatory enzymes and cytokines as well as caused significant damage to nigrostriatal dopaminergic system of the brain. Thymol treatment in ROT challenged rats appears to significantly attenuate dopaminergic neuronal loss, oxidative stress and inflammation. The present study showed protective effects of thymol in ROT-induced neurotoxicity and neurodegeneration mediated by preservation of endogenous antioxidant defense networks and attenuation of inflammatory mediators including cytokines and enzymes.


2021 ◽  
pp. 1-15
Author(s):  
Zijuan Zhang ◽  
Li Hao ◽  
Ming Shi ◽  
Ziyang Yu ◽  
Simai Shao ◽  
...  

Background: Glucagon-like peptide 2 (GLP-2) is a peptide hormone derived from the proglucagon gene expressed in the intestines, pancreas and brain. Some previous studies showed that GLP-2 improved aging and Alzheimer’s disease related memory impairments. Parkinson’s disease (PD) is a progressive neurodegenerative disorder, and to date, there is no particular medicine reversed PD symptoms effectively. Objective: The aim of this study was to evaluate neuroprotective effects of a GLP-2 analogue in the 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) PD mouse model. Methods: In the present study, the protease resistant Gly(2)-GLP-2 (50 nmol/kg ip.) analogue has been tested for 14 days by behavioral assessment, transmission electron microscope, immunofluorescence histochemistry, enzyme-linked immunosorbent assay and western blot in an acute PD mouse model induced by MPTP. For comparison, the incretin receptor dual agonist DA5-CH was tested in a separate group. Results: The GLP-2 analogue treatment improved the locomotor and exploratory activity of mice, and improved bradykinesia and movement imbalance of mice. Gly(2)-GLP-2 treatment also protected dopaminergic neurons and restored tyrosine hydroxylase expression levels in the substantia nigra. Gly(2)-GLP-2 furthermore reduced the inflammation response as seen in lower microglia activation, and decreased NLRP3 and interleukin-1β pro-inflammatory cytokine expression levels. In addition, the GLP-2 analogue improved MPTP-induced mitochondrial dysfunction in the substantia nigra. The protective effects were comparable to those of the dual agonist DA5-CH. Conclusion: The present results demonstrate that Gly(2)-GLP-2 can attenuate NLRP3 inflammasome-mediated inflammation and mitochondrial damage in the substantia nigra induced by MPTP, and Gly(2)-GLP-2 shows neuroprotective effects in this PD animal model.


2021 ◽  
Vol 22 (13) ◽  
pp. 6946
Author(s):  
Weishun Tian ◽  
Suyoung Heo ◽  
Dae-Woon Kim ◽  
In-Shik Kim ◽  
Dongchoon Ahn ◽  
...  

Free radical generation and oxidative stress push forward an immense influence on the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Maclura tricuspidata fruit (MT) contains many biologically active substances, including compounds with antioxidant properties. The current study aimed to investigate the neuroprotective effects of MT fruit on hydrogen peroxide (H2O2)-induced neurotoxicity in SH-SY5Y cells. SH-SY5Y cells were pretreated with MT, and cell damage was induced by H2O2. First, the chemical composition and free radical scavenging properties of MT were analyzed. MT attenuated oxidative stress-induced damage in cells based on the assessment of cell viability. The H2O2-induced toxicity caused by ROS production and lactate dehydrogenase (LDH) release was ameliorated by MT pretreatment. MT also promoted an increase in the expression of genes encoding the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). MT pretreatment was associated with an increase in the expression of neuronal genes downregulated by H2O2. Mechanistically, MT dramatically suppressed H2O2-induced Bcl-2 downregulation, Bax upregulation, apoptotic factor caspase-3 activation, Mitogen-activated protein kinase (MAPK) (JNK, ERK, and p38), and Nuclear factor-κB (NF-κB) activation, thereby preventing H2O2-induced neurotoxicity. These results indicate that MT has protective effects against H2O2-induced oxidative damage in SH-SY5Y cells and can be used to prevent and protect against neurodegeneration.


2020 ◽  
Vol 21 (17) ◽  
pp. 6047
Author(s):  
Huifangjie Li ◽  
William C. Knight ◽  
Pengfei Yang ◽  
Yingqiu Guo ◽  
Joel S. Perlmutter ◽  
...  

We found interactions between dopamine and oxidative damage in the striatum involved in advanced neurodegeneration, which probably change the microglial phenotype. We observed possible microglia dystrophy in the striatum of neurodegenerative brains. To investigate the interactions between oxidative damage and microglial phenotype, we quantified myeloperoxidase (MPO), poly (ADP-Ribose) (PAR), and triggering receptors expressed on myeloid cell 2 (TREM2) using enzyme-linked immunosorbent assay (ELISA). To test the correlations of microglia dystrophy and tauopathy, we quantified translocator protein (TSPO) and tau fibrils using autoradiography. We chose the caudate and putamen of Lewy body diseases (LBDs) (Parkinson’s disease, Parkinson’s disease dementia, and Dementia with Lewy body), Alzheimer’s disease (AD), and control brains and genotyped for TSPO, TREM2, and bridging integrator 1 (BIN1) genes using single nucleotide polymorphisms (SNP) assays. TREM2 gene variants were absent across all samples. However, associations between TSPO and BIN1 gene polymorphisms and TSPO, MPO, TREM2, and PAR level variations were found. PAR levels reduced significantly in the caudate of LBDs. TSPO density and tau fibrils decreased remarkably in the striatum of LBDs but increased in AD. Oxidative damage, induced by misfolded tau proteins and dopamine metabolism, causes microglia dystrophy or senescence during the late stage of LBDs. Consequently, microglia dysfunction conversely reduces tau propagation. The G allele of the BIN1 gene is a potential risk factor for tauopathy.


2020 ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's. The drugs currently used to treat PD cannot inhibit the development of PD, and long-term use produces severe drug resistance and adverse reaction. Artemisinin (ART) is an active ingredient of Artemisia annua and has a neuroprotective effect, but the mechanism is still unclear. This study was designed to investigate the neuroprotective effect of ART in MPP+-treated SH-SY5Y cells. Results There was no significant cytotoxicity when the ART concentration was under. 40μM. The 20μM ART for 24h could increase the cell viability by reducing oxidative stress and cell apoptosis in MPP+-treated SH-SY5Y cell. In addition, immunoblot and immunofluorescence results showed that MPP+ treatment increased the expression of Beclin1, LC3II/LC3I and decreased the expression of P62, while ART can reverse the changes caused by MPP+. Discussion More and more researches reported that ART and its derivates have neuroprotective effects through anti-oxidant and anti-apoptosis. we found that pre-treated cells with 20μM ART for 4h could significantly increase the viability in Parkinson's disease cell model. The oxidative stress and apoptosis were the main reason for the degeneration of dopaminergic neurons, while artemisinin can attenuate oxidative stress and apoptosis in MPP+-lesioned dopaminergic neurons. The levels of autophagy proteins LC3II/I, Beclin1 and P62 also showed that MPP+ increased the autophagy level, and pre-treatment with ART decreased the autophagy level, which may be the pathological mechanism for artemisinin to reduce oxidative stress damage and apoptosis. Conclusions These results indicate that ART exerts a positive effect on MPP+-treated SH-SY5Y cells in terms of anti-oxidative stress and anti-apoptosis. These effects may be related to autophagy. These findings contribute to a better understanding of the critical role of ART in PD treatment.


2020 ◽  
Vol 19 (6) ◽  
pp. 1197-1201 ◽  
Author(s):  
Jing Li ◽  
Yue Liu ◽  
Li Wang ◽  
Zhaowei Gu ◽  
Zhigang Huan ◽  
...  

Purpose: To investigation the protective effects of hesperetin against 6-hydroxydopamine (6-OHDA)- induced neurotoxicity. Methods: SH-SY5Y cells were incubated with 6-OHDA to create an in vitro model of neurotoxicity. This model was used to test the neuroprotective effects of hesperetin. Cell viability was assessed by MTT and lactate dehydrogenase (LDH) release assays. Flow cytometry and western blot were used to quantify apoptosis. Oxidative stress was evaluated by determining intracellular glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS). Results: In SH-SY5Y cells, treatment with 6-OHDA decreased cell viability and promoted LDH release. However, exogenous hesperetin protected against 6-OHDA-mediated toxicity. Similarly, although incubation with 6-OHDA induced apoptosis and increased cleaved caspase-3 and -9 levels, treatment with hesperetin protected against these effects. Treatment with 6-OHDA also led to significant oxidative stress, as indicated by reduced GSH and SOD levels and increased MDA and ROS levels in SH-SY5Y cells. However, these changes were reversed by pre-treatment with hesperetin. Of interest, hesperetin led to changes in 6-OHDA-induced expression of NRF2, heme oxygenase-1 (HO-1), glutamate-cysteine ligase (GCL) catalytic subunit (GCLC), and GCL modulatory (GCLM). Conclusion: Hesperetin protects against cell toxicity, apoptosis, and oxidative stress via activation of NRF2 pathway in a 6-OHDA-induced model of neurotoxicity. Future studies should investigate the use of hesperetin as a potential therapeutic approach for prevention or management of Parkinson’s disease. Keywords: Hesperetin, 6-OHDA, Neurotoxicity, NRF2, Parkinson’s disease


2014 ◽  
Vol 206 (5) ◽  
pp. 655-670 ◽  
Author(s):  
Ghazaleh Ashrafi ◽  
Julia S. Schlehe ◽  
Matthew J. LaVoie ◽  
Thomas L. Schwarz

To minimize oxidative damage to the cell, malfunctioning mitochondria need to be removed by mitophagy. In neuronal axons, mitochondrial damage may occur in distal regions, far from the soma where most lysosomal degradation is thought to occur. In this paper, we report that PINK1 and Parkin, two Parkinson’s disease–associated proteins, mediate local mitophagy of dysfunctional mitochondria in neuronal axons. To reduce cytotoxicity and mimic physiological levels of mitochondrial damage, we selectively damaged a subset of mitochondria in hippocampal axons. Parkin was rapidly recruited to damaged mitochondria in axons followed by formation of LC3-positive autophagosomes and LAMP1-positive lysosomes. In PINK1−/− axons, damaged mitochondria did not accumulate Parkin and failed to be engulfed in autophagosomes. Similarly, initiation of mitophagy was blocked in Parkin−/− axons. Our findings demonstrate that the PINK1–Parkin-mediated pathway is required for local mitophagy in distal axons in response to focal damage. Local mitophagy likely provides rapid neuroprotection against oxidative stress without a requirement for retrograde transport to the soma.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 918
Author(s):  
Heng-Chung Kung ◽  
Kai-Jung Lin ◽  
Chia-Te Kung ◽  
Tsu-Kung Lin

Parkinson’s disease (PD) is the second most common neurodegenerative disease and is characterized by dopaminergic neuronal loss. The exact pathogenesis of PD is complex and not yet completely understood, but research has established the critical role mitochondrial dysfunction plays in the development of PD. As the main producer of cytosolic reactive oxygen species (ROS), mitochondria are particularly susceptible to oxidative stress once an imbalance between ROS generation and the organelle’s antioxidative system occurs. An overabundance of ROS in the mitochondria can lead to mitochondrial dysfunction and further vicious cycles. Once enough damage accumulates, the cell may undergo mitochondria-dependent apoptosis or necrosis, resulting in the neuronal loss of PD. Polyphenols are a group of natural compounds that have been shown to offer protection against various diseases, including PD. Among these, the plant-derived polyphenol, resveratrol, exhibits neuroprotective effects through its antioxidative capabilities and provides mitochondria protection. Resveratrol also modulates crucial genes involved in antioxidative enzymes regulation, mitochondrial dynamics, and cellular survival. Additionally, resveratrol offers neuroprotective effects by upregulating mitophagy through multiple pathways, including SIRT-1 and AMPK/ERK pathways. This compound may provide potential neuroprotective effects, and more clinical research is needed to establish the efficacy of resveratrol in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document