scholarly journals Mast cells and dendritic cells form synapses that facilitate antigen transfer for T cell activation

2015 ◽  
Vol 210 (5) ◽  
pp. 851-864 ◽  
Author(s):  
Amanda Carroll-Portillo ◽  
Judy L. Cannon ◽  
Joost te Riet ◽  
Anna Holmes ◽  
Yuko Kawakami ◽  
...  

Mast cells (MCs) produce soluble mediators such as histamine and prostaglandins that are known to influence dendritic cell (DC) function by stimulating maturation and antigen processing. Whether direct cell–cell interactions are important in modulating MC/DC function is unclear. In this paper, we show that direct contact between MCs and DCs occurs and plays an important role in modulating the immune response. Activation of MCs through FcεRI cross-linking triggers the formation of stable cell–cell interactions with immature DCs that are reminiscent of the immunological synapse. Direct cellular contact differentially regulates the secreted cytokine profile, indicating that MC modulation of DC populations is influenced by the nature of their interaction. Synapse formation requires integrin engagement and facilitates the transfer of internalized MC-specific antigen from MCs to DCs. The transferred material is ultimately processed and presented by DCs and can activate T cells. The physiological outcomes of the MC–DC synapse suggest a new role for intercellular crosstalk in defining the immune response.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 722-722
Author(s):  
Galyna Afonina ◽  
Manali Joglekar ◽  
Rui Qi ◽  
Gowthami M. Arepally

Abstract Abstract 722 Heparin-Induced Thrombocytopenia (HIT) is caused by antibodies to multimolecular complexes of Platelet Factor 4 (PF4) and heparin (H). Little is known about the cellular mechanisms underlying the PF4/H immune response. Our previous studies have shown that mice injected with murine (m) PF4/H complexes develop a de novo immune response to mPF4/H, but do not respond to injections of mPF4 alone or H alone. In other studies using this model, we have shown that the HIT immune response is T-cell dependent, requires the presence of PF4/H multimolecular complexes and does not engage TLRs via MyD88. To examine the cellular basis of the HIT immune response, we performed studies addressing requirements for antigen presentation. We first isolated splenocytes from non-immunized C57Bl/6 mice and incubated 4×105 splenocytes with mPF4 alone (10mg/ml, final concentration.), heparin alone (0.4U/ml, final), mPF4/H complexes (10mg/ml and 0.4U/ml, final), buffer or LPS (1 mg/ml, final, positive control). We noted significant levels of IL-12 in wells incubated 24hrs with mPF4/H (109 ± 7 pg/mL) or LPS (256 ± 22 pg/mL) but not wells containing mPF4 (33 ± 7 pg/mL), H (5 ± 7 pg/mL), or buffer (9 ± 13 pg/mL). In other studies, we noted that splenic dendritic cells (DCs) were primarily activated by mPF4/H complexes and that cellular activation, as gauged by IL-12 (Figure 1A) or IFN-g (data not shown) occurred in a heparin-dependent manner. DCs activation by mPF4/H complexes was not dependent on CXCR3 or pattern recognition receptors, such as receptor for dectin, mannose or complement receptor 3 (CR3 or CD11b antibody). To determine the effect of DC activation on T-cell responses, we performed mixed lymphocyte reaction assays using DCs isolated from C57Bl/6 mice (3×105 cell/well) and naïve T-cells from Balb/c mice (1:5 cellular ratio). Pre-incubation of Bl/6 DCs with mPF4/H complexes, but not mPF4, H or buffer alone resulted in Balb/c T cell activation and release of cytokines indicative of T helper (Th) 1 immune response (Figure 1B). In summary, we show that DC s are directly activated by PF4/H multimolecular complexes, and that cellular activation by complexes results in a predominant Th1 polarization. Additional studies are underway to identify the relevant receptor for DC activation, and additional pathways of antigen processing and presentation that are necessary for the initiation of a PF4/H specific adaptive immune response. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sizhe Liu ◽  
Vasiliy Galat ◽  
Yekaterina Galat4 ◽  
Yoo Kyung Annie Lee ◽  
Derek Wainwright ◽  
...  

AbstractNatural killer (NK) cell is a specialized immune effector cell type that plays a critical role in immune activation against abnormal cells. Different from events required for T cell activation, NK cell activation is governed by the interaction of NK receptors with target cells, independent of antigen processing and presentation. Due to relatively unsophisticated cues for activation, NK cell has gained significant attention in the field of cancer immunotherapy. Many efforts are emerging for developing and engineering NK cell-based cancer immunotherapy. In this review, we provide our current understandings of NK cell biology, ongoing pre-clinical and clinical development of NK cell-based therapies and discuss the progress, challenges, and future perspectives.


2009 ◽  
Vol 182 (12) ◽  
pp. 8080-8093 ◽  
Author(s):  
Lachlan M. Moldenhauer ◽  
Kerrilyn R. Diener ◽  
Dougal M. Thring ◽  
Michael P. Brown ◽  
John D. Hayball ◽  
...  

1997 ◽  
Vol 323 (2) ◽  
pp. 511-519 ◽  
Author(s):  
Chad K. OH ◽  
Markus NEURATH ◽  
Jeong-Je CHO ◽  
Tekli SEMERE ◽  
Dean D. METCALFE

T-cell activation gene 3 (TCA3) encodes a β-chemokine that is transcriptionally regulated in mast cells; the gene has a functional NF-κB element at positions -194 to -185. The 5´-flanking region of this gene is also known to have a negative regulatory region between -2057 and -1342. To characterize the negative regulatory elements (NREs), this region was sequenced and then digested by HindIII enzyme into two fragments, NRE-1 (-2057 to -1493) and NRE-2 (-1492 to -1342). Both NRE-1 and NRE-2 in the 5´–3´ orientation inhibited chloramphenicol acetyltransferase (CAT)-protein synthesis by a TCA3–CAT construct transfected into mast cells that were then activated. Only NRE-1 inhibited CAT-protein synthesis in the 3´–5´ orientation. Further deletion of the 5´ region of NRE-1 partially abolished the inhibitory activity. Both NRE-1 and NRE-2 inhibited the activity of a CD20–CAT construct independent of cell activation. Electrophoretic mobility shift assays showed DNA–protein complex formation with subsequences (CCCCCATTCT) of NRE-1 (NRE-1a) and (CCATGA) of NRE-2 (NRE-2b). NRE-1a appears to be novel. NRE-2b is identical with a putative silencer motif in the αIIb integrin gene. Site-directed mutagenesis demonstrated that both NRE-1a and NRE-2b are important in the negative regulation of TCA3 promoter activity. In vivo ligation-mediated PCR footprinting of the NRE-2 region revealed protection between -1372 and -1354, which contains NRE-2b. The data thus demonstrate identity of a silencer motif, here termed NRE-2b, in both the αIIb integrin gene and the TCA3, and that this silencer region in mast cells is functional both in vivoand in vitro. Further, evidence is presented that the promoter for TCA3 contains a novel silencer motif, termed NRE-1a, characterized by a CT-rich sequence.


2015 ◽  
Vol 1623 ◽  
pp. 53-62 ◽  
Author(s):  
María I. Cuartero ◽  
Iván Ballesteros ◽  
Ignacio Lizasoain ◽  
María A. Moro

2009 ◽  
Vol 182 (8) ◽  
pp. 4686-4695 ◽  
Author(s):  
Taku Kambayashi ◽  
Eric J. Allenspach ◽  
John T. Chang ◽  
Tao Zou ◽  
Jonathan E. Shoag ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document