scholarly journals FUS inclusions disrupt RNA localization by sequestering kinesin-1 and inhibiting microtubule detyrosination

2017 ◽  
Vol 216 (4) ◽  
pp. 1015-1034 ◽  
Author(s):  
Kyota Yasuda ◽  
Sarah F. Clatterbuck-Soper ◽  
Meredith E. Jackrel ◽  
James Shorter ◽  
Stavroula Mili

Cytoplasmic inclusions of the RNA-binding protein fused in sarcoma (FUS) represent one type of membraneless ribonucleoprotein compartment. Formation of FUS inclusions is promoted by amyotrophic lateral sclerosis (ALS)–linked mutations, but the cellular functions affected upon inclusion formation are poorly defined. In this study, we find that FUS inclusions lead to the mislocalization of specific RNAs from fibroblast cell protrusions and neuronal axons. This is mediated by recruitment of kinesin-1 mRNA and protein within FUS inclusions, leading to a loss of detyrosinated glutamate (Glu)–microtubules (MTs; Glu-MTs) and an inability to support the localization of RNAs at protrusions. Importantly, dissolution of FUS inclusions using engineered Hsp104 disaggregases, or overexpression of kinesin-1, reverses these effects. We further provide evidence that kinesin-1 affects MT detyrosination not through changes in MT stability, but rather through targeting the tubulin carboxypeptidase enzyme onto specific MTs. Interestingly, other pathological inclusions lead to similar outcomes, but through apparently distinct mechanisms. These results reveal a novel kinesin-dependent mechanism controlling the MT cytoskeleton and identify loss of Glu-MTs and RNA mislocalization as common outcomes of ALS pathogenic mutations.

2013 ◽  
Vol 203 (5) ◽  
pp. 737-746 ◽  
Author(s):  
Kyota Yasuda ◽  
Huaye Zhang ◽  
David Loiselle ◽  
Timothy Haystead ◽  
Ian G. Macara ◽  
...  

RNA localization pathways direct numerous mRNAs to distinct subcellular regions and affect many physiological processes. In one such pathway the tumor-suppressor protein adenomatous polyposis coli (APC) targets RNAs to cell protrusions, forming APC-containing ribonucleoprotein complexes (APC-RNPs). Here, we show that APC-RNPs associate with the RNA-binding protein Fus/TLS (fused in sarcoma/translocated in liposarcoma). Fus is not required for APC-RNP localization but is required for efficient translation of associated transcripts. Labeling of newly synthesized proteins revealed that Fus promotes translation preferentially within protrusions. Mutations in Fus cause amyotrophic lateral sclerosis (ALS) and the mutant protein forms inclusions that appear to correspond to stress granules. We show that overexpression or mutation of Fus results in formation of granules, which preferentially recruit APC-RNPs. Remarkably, these granules are not translationally silent. Instead, APC-RNP transcripts are translated within cytoplasmic Fus granules. These results unexpectedly show that translation can occur within stress-like granules. Importantly, they identify a new local function for cytoplasmic Fus with implications for ALS pathology.


2015 ◽  
Vol 35 (14) ◽  
pp. 2385-2399 ◽  
Author(s):  
Nadine Bakkar ◽  
Arianna Kousari ◽  
Tina Kovalik ◽  
Yang Li ◽  
Robert Bowser

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective loss of motor neurons. Various factors contribute to the disease, including RNA binding protein dysregulation and oxidative stress, but their exact role in pathogenic mechanisms remains unclear. We have recently linked another RNA binding protein, RBM45, to ALS via increased levels of protein in the cerebrospinal fluid of ALS patients and its localization to cytoplasmic inclusions in ALS motor neurons. Here we show RBM45 nuclear exit in ALS spinal cord motor neurons compared to controls, a phenotype recapitulatedin vitroin motor neurons treated with oxidative stressors. We find that RBM45 binds and stabilizes KEAP1, the inhibitor of the antioxidant response transcription factor NRF2. ALS lumbar spinal cord lysates similarly show increased cytoplasmic binding of KEAP1 and RBM45. Binding of RBM45 to KEAP1 impedes the protective antioxidant response, thus contributing to oxidative stress-induced cellular toxicity. Our findings thus describe a novel link between a mislocalized RNA binding protein implicated in ALS (RBM45) and dysregulation of the neuroprotective antioxidant response seen in the disease.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1791
Author(s):  
Ana Bajc Česnik ◽  
Helena Motaln ◽  
Boris Rogelj

Amyotrophic lateral sclerosis is a progressive neurodegenerative disorder, characterized by cytoplasmic inclusions of RNA-binding protein TDP-43. Despite decades of research and identification of more than 50 genes associated with amyotrophic lateral sclerosis (ALS), the cause of TDP-43 translocation from the nucleus and its aggregation in the cytoplasm still remains unknown. Our study addressed the impact of selected ALS-associated genes on TDP-43 aggregation behavior in wild-type and aggregation prone TDP-43 in vitro cell models. These were developed by deleting TDP-43 nuclear localization signal and stepwise shortening its low-complexity region. The SH-SY5Y cells were co-transfected with the constructs of aggregation-prone TDP-43 and wild-type or mutant ALS-associated genes hnRNPA1, MATR3, VCP or UBQLN2. The investigated genes displayed a unique impact on TDP-43 aggregation, generating distinct types of cytoplasmic inclusions, similar to those already described as resembling prion strains, which could represent the basis for neurodegenerative disease heterogeneity.


2017 ◽  
Vol 474 (8) ◽  
pp. 1417-1438 ◽  
Author(s):  
Alice Ford Harrison ◽  
James Shorter

Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid composition to prion domains in yeast, which enable several proteins, including Sup35 and Rnq1, to form infectious conformers, termed prions. In humans, PrLDs contribute to RBP function and enable RBPs to undergo liquid–liquid phase transitions that underlie the biogenesis of various membraneless organelles. However, this activity appears to render RBPs prone to misfolding and aggregation connected to neurodegenerative disease. Indeed, numerous RBPs with PrLDs, including TDP-43 (transactivation response element DNA-binding protein 43), FUS (fused in sarcoma), TAF15 (TATA-binding protein-associated factor 15), EWSR1 (Ewing sarcoma breakpoint region 1), and heterogeneous nuclear ribonucleoproteins A1 and A2 (hnRNPA1 and hnRNPA2), have now been connected via pathology and genetics to the etiology of several neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Here, we review the physiological and pathological roles of the most prominent RBPs with PrLDs. We also highlight the potential of protein disaggregases, including Hsp104, as a therapeutic strategy to combat the aberrant phase transitions of RBPs with PrLDs that likely underpin neurodegeneration.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Scott E. Ugras ◽  
James Shorter

Amyotrophic Lateral Sclerosis (ALS) is an adult onset neurodegenerative disease, which is universally fatal. While the causes of this devastating disease are poorly understood, recent advances have implicated RNA-binding proteins (RBPs) that contain predicted prion domains as a major culprit. Specifically, mutations in the RBPs TDP-43 and FUS can cause ALS. Cytoplasmic mislocalization and inclusion formation are common pathological features of TDP-43 and FUS proteinopathies. Though these RBPs share striking pathological and structural similarities, considerable evidence suggests that the ALS-linked mutations in TDP-43 and FUS can cause disease by disparate mechanisms. In a recent study, Couthouis et al. screened for protein candidates that were also involved in RNA processing, contained a predicted prion domain, shared other phenotypic similarities with TDP-43 and FUS, and identified TAF15 as a putative ALS gene. Subsequent sequencing of ALS patients successfully identified ALS-linked mutations in TAF15 that were largely absent in control populations. This study underscores the important role that perturbations in RNA metabolism might play in neurodegeneration, and it raises the possibility that future studies will identify other RBPs with critical roles in neurodegenerative disease.


2021 ◽  
Vol 7 (30) ◽  
pp. eabf8660
Author(s):  
Nicol Birsa ◽  
Agnieszka M. Ule ◽  
Maria Giovanna Garone ◽  
Brian Tsang ◽  
Francesca Mattedi ◽  
...  

FUsed in Sarcoma (FUS) is a multifunctional RNA binding protein (RBP). FUS mutations lead to its cytoplasmic mislocalization and cause the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Here, we use mouse and human models with endogenous ALS-associated mutations to study the early consequences of increased cytoplasmic FUS. We show that in axons, mutant FUS condensates sequester and promote the phase separation of fragile X mental retardation protein (FMRP), another RBP associated with neurodegeneration. This leads to repression of translation in mouse and human FUS-ALS motor neurons and is corroborated in vitro, where FUS and FMRP copartition and repress translation. Last, we show that translation of FMRP-bound RNAs is reduced in vivo in FUS-ALS motor neurons. Our results unravel new pathomechanisms of FUS-ALS and identify a novel paradigm by which mutations in one RBP favor the formation of condensates sequestering other RBPs, affecting crucial biological functions, such as protein translation.


2018 ◽  
Author(s):  
Maeve Tischbein ◽  
Desiree M. Baron ◽  
Yen-Chen Lin ◽  
Katherine V. Gall ◽  
John E. Landers ◽  
...  

AbstractExcitotoxic levels of glutamate represent a physiological stress that is strongly linked to amyotrophic lateral sclerosis (ALS) and other neurological disorders. Emerging evidence indicates a role for neurodegenerative disease linked RNA-binding proteins (RBPs) in the cellular stress response. However, the relationships between excitotoxicity, RBP function and pathology have not been explored. Here, we found that excitotoxicity induced the translocation of select ALS-linked RBPs from the nucleus to the cytoplasm within neurons. RBPs affected by excitotoxicity include TAR DNA-binding protein 43 (TDP-43) and, most robustly, fused in sarcoma/translocated in liposarcoma (FUS/TLS). FUS translocation occurs through a calcium-dependent mechanism and coincides with striking alterations in nucleocytoplasmic transport. Further, glutamate-induced upregulation of Gria2 in neurons was dependent on FUS expression, consistent with a functional role for FUS under excitotoxic stress. These findings reveal a link between prominent factors in neurodegenerative disease, namely excitotoxicity, disease-associated RBPs and nucleocytoplasmic transport.


2020 ◽  
Vol 79 (4) ◽  
pp. 370-377 ◽  
Author(s):  
Kensuke Ikenaka ◽  
Shinsuke Ishigaki ◽  
Yohei Iguchi ◽  
Kaori Kawai ◽  
Yusuke Fujioka ◽  
...  

Abstract Alterations of RNA metabolism caused by mutations in RNA-binding protein genes, such as transactivating DNA-binding protein-43 (TDP-43) and fused in sarcoma (FUS), have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). Unlike the accumulation of TDP43, which is accepted as a pathological hall mark of sporadic ALS (sALS), FUS pathology in sALS is still under debate. Although immunoreactive inclusions of FUS have been detected in sALS patients previously, the technical limitation of signal detection, including the necessity of specific antigen retrieval, restricts our understanding of FUS-associated ALS pathology. In this study, we applied a novel detection method using a conventional antigen retrieval technique with Sudan Black B treatment to identify FUS-positive inclusions in sALS patients. We classified pathological motor neurons into 5 different categories according to the different aggregation characteristics of FUS and TDP-43. Although the granular type was more dominant for inclusions with TDP-43, the skein-like type was more often observed in FUS-positive inclusions, suggesting that these 2 proteins undergo independent aggregation processes. Moreover, neurons harboring FUS-positive inclusions demonstrated substantially reduced expression levels of dynactin-1, a retrograde motor protein, indicating that perturbation of nucleocytoplasmic transport is associated with the formation of cytoplasmic inclusions of FUS in sALS.


2021 ◽  
Vol 14 ◽  
Author(s):  
Clara Tejido ◽  
Donya Pakravan ◽  
Ludo Van Den Bosch

Mutations in the FUS gene cause amyotrophic lateral sclerosis (ALS-FUS). However, the exact pathogenic mechanism of mutant fused in sarcoma (FUS) protein is not completely understood. FUS is an RNA binding protein (RBP) localized predominantly in the nucleus, but ALS-linked FUS mutations can affect its nuclear localization signal impairing its import into the nucleus. This mislocalization to the cytoplasm facilitates FUS aggregation in cytoplasmic inclusions. Therapies targeting post translational modifications are rising as new treatments for ALS, in particular acetylation which could have a role in the dynamics of RBPs. Research using histone deacetylase (HDAC) inhibitors in FUS-ALS models showed that HDACs can influence cytoplasmic FUS localization. Inhibition of HDACs could promote acetylation of the FUS RNA binding domain (RRM) and altering its RNA interactions resulting in FUS maintenance in the nucleus. In addition, acetylation of FUS RRMs might also favor or disfavor its incorporation into pathological inclusions. In this review, we summarize and discuss the evidence for the potential role of HDACs in the context of FUS-ALS and we propose a new hypothesis based on this overview.


2020 ◽  
Vol 29 (16) ◽  
pp. 2684-2697
Author(s):  
Alexandra Arenas ◽  
Jing Chen ◽  
Lisha Kuang ◽  
Kelly R Barnett ◽  
Edward J Kasarskis ◽  
...  

Abstract Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the preferential death of motor neurons. Approximately 10% of ALS cases are familial and 90% are sporadic. Fused in sarcoma (FUS) is a ubiquitously expressed RNA-binding protein implicated in familial ALS and frontotemporal dementia (FTD). The physiological function and pathological mechanism of FUS are not well understood, particularly whether post-translational modifications play a role in regulating FUS function. In this study, we discovered that FUS was acetylated at lysine-315/316 (K315/K316) and lysine-510 (K510) residues in two distinct domains. Located in the nuclear localization sequence, K510 acetylation disrupted the interaction between FUS and Transportin-1, resulting in the mislocalization of FUS in the cytoplasm and formation of stress granule-like inclusions. Located in the RNA recognition motif, K315/K316 acetylation reduced RNA binding to FUS and decreased the formation of cytoplasmic inclusions. Treatment with deacetylase inhibitors also significantly reduced the inclusion formation in cells expressing ALS mutation P525L. More interestingly, familial ALS patient fibroblasts showed higher levels of FUS K510 acetylation as compared with healthy controls. Lastly, CREB-binding protein/p300 acetylated FUS, whereas both sirtuins and histone deacetylases families of lysine deacetylases contributed to FUS deacetylation. These findings demonstrate that FUS acetylation regulates the RNA binding, subcellular localization and inclusion formation of FUS, implicating a potential role of acetylation in the pathophysiological process leading to FUS-mediated ALS/FTD.


Sign in / Sign up

Export Citation Format

Share Document