scholarly journals Zc3h10 regulates adipogenesis by controlling translation and F-actin/mitochondria interaction

2021 ◽  
Vol 220 (3) ◽  
Author(s):  
Matteo Audano ◽  
Silvia Pedretti ◽  
Simona Ligorio ◽  
Francesco Gualdrini ◽  
Sara Polletti ◽  
...  

The commitment of mesenchymal stem cells to preadipocytes is stimulated by hormonal induction. Preadipocytes induced to differentiate repress protein synthesis, remodel their cytoskeleton, and increase mitochondrial function to support anabolic pathways. These changes enable differentiation into mature adipocytes. Our understanding of the factors that coordinately regulate the early events of adipocyte differentiation remains incomplete. Here, by using multipronged approaches, we have identified zinc finger CCCH-type containing 10 (Zc3h10) as a critical regulator of the early stages of adipogenesis. Zc3h10 depletion in preadipocytes resulted in increased protein translation and impaired filamentous (F)-actin remodeling, with the latter detrimental effect leading to mitochondrial and metabolic dysfunction. These defects negatively affected differentiation to mature adipocytes. In contrast, Zc3h10 overexpression yielded mature adipocytes with remarkably increased lipid droplet size. Overall, our study establishes Zc3h10 as a fundamental proadipogenic transcription factor that represses protein synthesis and promotes F-actin/mitochondria dynamics to ensure proper energy metabolism and favor lipid accumulation.

2021 ◽  
Author(s):  
Ruriko Sekiya-Aoyama ◽  
Yoshinori Arisaka ◽  
Masahiro Hakariya ◽  
Hiroki Masuda ◽  
Takanori Iwata ◽  
...  

Mesenchymal stem cells on polyrotaxane surfaces underwent enhanced osteoblast and adipocyte differentiation. Two independent parameters, high molecular mobility and negative charge on the surfaces, may not offset the effect to promote both differentiation.


Bone ◽  
2006 ◽  
Vol 39 (1) ◽  
pp. 181-188 ◽  
Author(s):  
Basem M. Abdallah ◽  
Mandana Haack-Sørensen ◽  
Trine Fink ◽  
Moustapha Kassem

2018 ◽  
Vol 19 (7) ◽  
pp. 2081 ◽  
Author(s):  
Christian Carpéné ◽  
Héctor Pejenaute ◽  
Raquel del Moral ◽  
Nathalie Boulet ◽  
Elizabeth Hijona ◽  
...  

Phenolic compounds are among the most investigated herbal remedies, as is especially the case for resveratrol. Many reports have shown its anti-aging properties and the ability to reduce obesity and diabetes induced by high-fat diet in mice. However, such beneficial effects hardly translate from animal models to humans. The scientific community has therefore tested whether other plant phenolic compounds may surpass the effects of resveratrol. In this regard, it has been reported that piceatannol reproduces in rodents the anti-obesity actions of its parent polyphenol. However, the capacity of piceatannol to inhibit adipocyte differentiation in humans has not been characterized so far. Here, we investigated whether piceatannol was antiadipogenic and antilipogenic in human preadipocytes. Human mesenchymal stem cells (hMSC), isolated from adipose tissues of lean and obese individuals, were differentiated into mature adipocytes with or without piceatannol, and their functions were explored. Fifty μM of piceatannol deeply limited synthesis/accumulation of lipids in both murine and hMSC-derived adipocytes. Interestingly, this phenomenon occurred irrespective of being added at the earlier or later stages of adipocyte differentiation. Moreover, piceatannol lowered glucose transport into adipocytes and decreased the expression of key elements of the lipogenic pathway (PPARγ, FAS, and GLUT4). Thus, the confirmation of the antiadipogenic properties of piceatanol in vitro warrants the realization of clinical studies for the application of this compound in the treatment of the metabolic complications associated with obesity.


Author(s):  
Yipeng Du ◽  
Xiaoting Li ◽  
Wenying Yan ◽  
Zhaohua Zeng ◽  
Dunzheng Han ◽  
...  

ObjectiveRegenerative therapy using mesenchymal stem cells (MSC) is a promising therapeutic method for critical limb ischemia (CLI). To understand how the cells are involved in the regenerative process of limb ischemia locally, we proposed a metabolic protein labeling method to label cell proteomes in situ and then decipher the proteome dynamics of MSCs in ischemic hind limb.Methods and ResultsIn this study, we overexpressed mutant methionyl-tRNA synthetase (MetRS), which could utilize azidonorleucine (ANL) instead of methionine (Met) during protein synthesis in MSCs. Fluorescent non-canonical amino-acid tagging (FUNCAT) was performed to detect the utilization of ANL in mutant MSCs. Mice with hindlimb ischemia (HLI) or Sham surgery were treated with MetRSmut MSCs or PBS, followed by i.p. administration of ANL at days 0, 2 6, and 13 after surgery. FUNCAT was also performed in hindlimb tissue sections to demonstrate the incorporation of ANL in transplanted cells in situ. At days 1, 3, 7, and 14 after the surgery, laser doppler imaging were performed to detect the blood reperfusion of ischemic limbs. Ischemic tissues were also collected at these four time points for histological analysis including HE staining and vessel staining, and processed for click reaction based protein enrichment followed by mass spectrometry and bioinformatics analysis. The MetRSmut MSCs showed strong green signal in cell culture and in HLI muscles as well, indicating efficient incorporation of ANL in nascent protein synthesis. By 14 days post-treatment, MSCs significantly increased blood reperfusion and vessel density, while reducing inflammation in HLI model compared to PBS. Proteins enriched by click reaction were distinctive in the HLI group vs. the Sham group. 34, 31, 49, and 26 proteins were significantly up-regulated whereas 28, 32, 62, and 27 proteins were significantly down-regulated in HLI vs. Sham at days 1, 3, 7, and 14, respectively. The differentially expressed proteins were more pronounced in the pathways of apoptosis and energy metabolism.ConclusionIn conclusion, mutant MetRS allows efficient and specific identification of dynamic cell proteomics in situ, which reflect the functions and adaptive changes of MSCs that may be leveraged to understand and improve stem cell therapy in critical limb ischemia.


2018 ◽  
Vol 500 (3) ◽  
pp. 682-690 ◽  
Author(s):  
Vuong Cat Khanh ◽  
Amin Firman Zulkifli ◽  
Chiho Tokunaga ◽  
Toshiharu Yamashita ◽  
Yuji Hiramatsu ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2335-2335
Author(s):  
Iekuni Oh ◽  
Akira Miyazato ◽  
Hiroyuki Mano ◽  
Tadashi Nagai ◽  
Kazuo Muroi ◽  
...  

Abstract Mesenchymal stem cells (MSCs) account for a very small population in bone marrow stroma as a non-hematopoietic component with multipotency of differentiation into adipocytes, osteocytes and chondrocytes. MSC-derived cells are known to have hematopoiesis-supporting and immunomodulatory abilities. Although clinical applications of MSCs have already been conducted for the suppression of graft versus host disease in allogeneic stem cell transplantation and for tissue regeneration, underlying mechanisms of the biological events are still obscure. Previously, we established a differentiation model of MSCs using a mouse embryo fibroblast cell line, C3H10T1/2 (10T1/2) (Nishikawa M et al: Blood81:1184–1192, 1993). Preadipocyte (A54) and myoblast (M1601) cell lines were cloned by treatment with 5-azacytidine. A54 cells and M1601 cells can terminally differentiate into adipocytes and myotubes, respectively, under appropriate conditions, while parent 10T1/2 cells remain undifferentiated. Moreover, A54 cells show a higher ability to support hematopoiesis compared with the other cell lines. In this study, we analyzed gene expression profiles of the three cell lines by using DNA microarray and real-time PCR to investigate molecular mechanisms for maintaining immaturity of parent 10T1/2 cells. In A54 cells, 202 genes were up-regulated, including those encoding critical factors for hematopoiesis such as SCF, Angiopoietin-1, and SDF-1 as well as genes known to be involved in adipocyte differentiation such as C/EBPα, C/EBPδ and PPAR-γ genes. These data are consistent with the hematopoiesis-supporting ability of A54 cells. During adipocyte differentiation, SCF and SDF-1 expression levels decreased in A54 cells while C/EBPα expression showed a steady level. Recently, osteoblasts have been reported to play crucial roles in “niche” for self-renewal of hematopoietic stem cells. Our results also implicate that precursor cells of non-hematopoietic components may have important roles for hematopoiesis in bone marrow. Meanwhile, in parent 10T1/2 cells, 105 genes were up-regulated, including CD90, Dlk, Wnt5α and many functionally unknown genes. Although C/EBPα expression was induced in 10T1/2 cells without differentiation under the adipocyte differentiation conditions, CD90 expression decreased, Dlk showed a steady level and Wnt5α was up-regulated. Assuming that some regulatory mechanisms are needed to keep an immature state of parent 10T1/2 cells even under the differentiation-inducible conditions, we performed following experiments. First, enforced Dlk expression in A54 cells did not inhibit terminal differentiation to adipocytes under the differentiation conditions. Second, when we cultured A54 cells in the conditioned media of parent 10T1/2 cells under the differentiation-inducible conditions, adipocyte differentiation was inhibited, suggesting that 10T1/2 cells produce some soluble molecules that can inhibit adipocyte differentiation. Since Wnt family is known to be involved in the regulation of self-renewal of several stem cells, Wnt5α may be one candidate for maintenance of “stemness” of MSCs. Taken together, the data of 10T1/2 cells suggest that MSCs can self-regulate their differentiation in the bone marrow stromal system. This concept may be important to investigate the fatty change of bone marrow in aging and in aplastic anemia.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4316-4316
Author(s):  
Brett M Stevens ◽  
Daniel A Pollyea ◽  
Nabilah Khan ◽  
Craig T Jordan

Abstract This project is focused on characterizing the malignant stem cells that drive the pathogenesis of MDS, with the goal of developing improved therapeutic strategies. To this end, we have established methods by which MDS stem cells can be identified, isolated and characterized in xenograft models. These approaches have been employed to permit global metabolomic and transcriptomic analyses, which have subsequently led to modeling novel therapeutic regimens. Initial studies exploited previous work in acute myelogenous leukemia to identify candidate phenotypic markers of stem cell malignancy. These efforts demonstrated that up-regulation of CD123 in the hematopoietic stem cell compartment identifies MDS stem cells as they transition from low risk to high risk stages of pathogenesis. Thus, using cell sorting, we are able to isolate early (CD123-) vs. late (CD123+) stage stem cells from MDS patient specimens and subject them to the experimental analyses outlined below. We first performed a transcriptomic study that demonstrated a massive increase in cellular protein translation machinery through significant increases in ribosomal proteins as stem cells progress to advanced stages of MDS. To functionally validate these findings, MDS stem cell populations were cultured with the fluorescent protein substrate OP-puro, which detects newly synthesized polypeptide chains. CD123+ stem cells strongly increase protein synthesis levels (~13-fold increase). Given the established role of protein translation homeostasis in hematopoietic stem cells [Signer et al., 2014], this finding indicates a major change in cellular metabolism as well as a potential therapeutic entry point. To further characterize cellular changes occurring as MDS stem cells evolve, we performed global mass spectrometry-based metabolomic analyses which further demonstrates increased protein biosynthesis as well as altered glutathione metabolism (elevated oxidized glutathione). Taken together, these findings indicate major metabolic changes in MDS stem cells as they acquire increasing malignant phenotypes. Next, we investigated signaling related to increased ribosomal protein production. Specifically, we examined the hypothesis that ribosomal subunit binding of MDM2, may play a role in pathogenesis. Intriguingly, our data show that the specific subunits known to bind MDM2 are increased in CD123+ MDS stem cells. Consistent with this observation, MDM2 is elevated as well. This finding indicates that increased ribosomal protein levels may function to inhibit p53 activity, thereby enhancing pathogenic outgrowth of MDS stem cells. Using the mechanistic insights outlined above, we explored novel therapeutic strategies. First, we examined drugs known to selectively target metabolism through altering protein synthesis and targeting ribosomal proteins (e.g. homoharringtonine, HHT)). In addition, given the prevalent role of hypomethylating agents in current MDS treatment regimens, we also examined how these inhibitors interact with 5-azacytidine (5-aza). In vitro studies indicate that multiple protein synthesis inhibitors selectively eradicate MDS stem cells (CD123+). In addition, combination with 5-aza yielded additive to synergistic eradication of MDS stem cells. We have demonstrated that high risk MDS specimens effectively engraft the NSG-S strain of immune deficient mice, when T cell depletion and a busulfan conditioning regimen are employed. Using this model, we transplanted primary MDS specimens and challenged using the regimens above. Treatment with HHT demonstrated selective eradication of MDS stem cells, with a significant differential toxicity observed in multiple samples (50-60% selective ablation). Finally, analysis of protein synthesis inhibitors in combination with the hypomethylating agent 5-aza demonstrated potent efficacy in targeting the MDS stem cell population with greater then additive toxicity when compared to single agent treatment(70-80% selective ablation). Taken together, these data show that changes in metabolic properties represent a critical inflection point in the pathogenesis and progression of the MDS. Focusing on such changes, we have identified novel pharmacological approaches that may effectively target the MDS stem cell population. Importantly, these approaches function well in conjunction with commonly used agents used in the treatment of MDS. Disclosures Pollyea: Alexion: Other: advisory board; Celgene: Other: advisory board, Research Funding; Glycomimetics: Other: DSMB member; Ariad: Other: advisory board; Pfizer: Other: advisory board, Research Funding.


2017 ◽  
Vol 125 (5) ◽  
pp. 355-360 ◽  
Author(s):  
Heitor F. Silva ◽  
Rodrigo P. F. Abuna ◽  
Helena B. Lopes ◽  
Marcelo S. Francischini ◽  
Paulo T. de Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document