scholarly journals CONTRAST BETWEEN THE ENVIRONMENTAL pH DEPENDENCIES OF PROPHASING AND NUCLEAR MEMBRANE FORMATION IN INTERPHASE-METAPHASE CELLS

1973 ◽  
Vol 58 (3) ◽  
pp. 608-617 ◽  
Author(s):  
Yoshitaka Obara ◽  
Hiroshi Yoshida ◽  
Lee S. Chai ◽  
Herbert Weinfeld ◽  
Avery A. Sandberg

In Chinese hamster Don cells, fusion of an interphase cell with a metaphase cell resulted either in prophasing of the interphase nucleus, including loss of the nuclear envelope (NE), or in the formation of a double membrane around the metaphase chromosomes. Only one of these phenomena occurred in a given interphase-metaphase (I–M) binucleate cell. At pH 7.4, there was about an equal probability that either event could occur amongst the population of I–M cells. The effect of pH changes in the medium containing the fused cells was examined. At pH 6.6, prophasing was the predominant event; at pH 8.0, membrane formation predominated. It was found that the rate of progression of a mononucleate cell from G2 to metaphase was appreciably faster at pH 6.6 than at pH 8.0. Conversely, the progression from metaphase to G1 was faster at pH 8.0 than at pH 6.6. These results with the mononucleate cells strengthen the hypothesis that structural changes in I–M cells are reflections of normal mitotic phenomena. Additional evidence for this hypothesis was produced by electron microscope examination after direct fixation in chrom-osmium. The double membrane around the chromosomes of the I–M cell was indistinguishable from the normal NE. The results obtained by varying the pH of the medium containing the fused cells provide an indication that disruption or formation of the NE of Don cells depends on the balance reached between disruptive and formative processes.

1975 ◽  
Vol 64 (2) ◽  
pp. 378-388 ◽  
Author(s):  
Y Obara ◽  
H Weinfeld ◽  
A A Sandberg

Using the cultured Chinese hamster cell line Don, G1 or S or a mixture of late-S/G2 cells were prepared by release from metaphase arrest. Metaphase (M) cells were also obtained by mitotic arrest of log-phase cultures with Colcemid and held in metaphase; such M cells remained untreated with any other compound and were termed standard M cells. When interphase (I) cells were fused at pH 8.0 and 37 degrees C with standard cells in the presence of Colcemid by means of UV-inactivated Sendai virus, binucleate interphase-metaphase (I-M) cells were obtained. In a given I-M cell there occurred within 30 min after fusion either prophasing of the I nucleus or formation of a nuclear envelope (NE) around the chromosomes. About 20% of early G1 cells, 35% of cells at the G1/S boundary, 50% of S cells, and 70% of late S/G2 cells could induce NE formation. If, before fusion, cycloheximide (CHE), an inhibitor of protein synthesis, was present during release from M arrest, the cells entered G1 but not S. About 20% of such early G1 cells, like the untreated early G1 cells, had the capacity to induce NE formation during subsequent fusion. If the cells were blocked in S with 5 mM thymidine (TdR), At least 80% of these cells could induce NE formation during subsequent fusion, but in the presence of both TdR and CHE only 35% could do so. It appeared, therefore, that protein synthesis in interphase was required for NE formation. Experiments with actinomycin D indicated that RNA synthesis was also necessary for acquisition of NE-inducing capacity. About 35% of G1 cells from confluent monolayers had the NE-inducing capacity, but prolonged exposure to CHE reduced their number to 8% . Removal of CHE restored the ability while the cells still remained in G1. This result indicated that continuing protein synthesis in the G1 cell was needed for NE formation subsequent to fusion. The fact that macromolecular synthesis must occur in the I cell before fusion if NE formation was to occur in the fused I-M cell lends further support to evidence adduced earlier that this phenomenon is a normal mitotic event. Prophasing of the I nucleus in I-M cells did not appear to be dependent on macromolecular synthesis in the I cell; earlier results from this laboratory showed, however, that protein synthesis in the prior G2 period of the M cell of the I-M pair was required for prophasing.


1974 ◽  
Vol 62 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Yoshitaka Obara ◽  
Lee S. Chai ◽  
Herbert Weinfeld ◽  
Avery A. Sandberg

Fusing human HeLa metaphase cells with HeLa interphase cells resulted within 30 min in either of two phenomena in the resultant binucleate cell: either prophasing of the interphase nucleus or formation of a normal-appearing nuclear envelope around the metaphase chromosomes. The frequency of either occurrence was strongly dependent on environmental pH. At pH's of 6.6–8.0, prophasing predominated; at pH 8.5 nuclear envelope formation predominated. Additionally, the frequencies of the two events in multinucleate cells depended on the metaphase/interphase ratio. When the ratio was 0.33 nuclear envelope formation predominated; when it was 2.0 prophasing predominated. In their general features, the results with fused HeLa cells resembled those reported earlier with fused Chinese hamster Don cells. However, the results provided an indication that between pH 6.6 and 8.0 the HeLa metaphase cells possessed a much greater capacity than the Don metaphase cells to induce prophasing. Fusion of Don metaphase cells with HeLa interphase cells or of Don interphase cells with HeLa metaphase cells at pH 8.0 resulted in nuclear envelope formation or prophasing in each kind of heterokaryon. As in the homokaryons, the frequencies of the two events in the heterokaryons depended on the metaphase/interphase ratio. The statistics of prophasing and nuclear envelope formation in the homo- and heterokaryon populations were consistent with the notion that disruption or formation of the nuclear envelope depends on the balance attained between disruptive and formative processes.


1999 ◽  
Vol 6 (4) ◽  
pp. 91-102 ◽  
Author(s):  
Nadezhda R. Tiras ◽  
Georgy V. Zherdev ◽  
Dmitry A. Moshkov

Adaptation or resistance of fish Mauthner cells (M-cells) to long duration (2 h) vestibular stimulation (LDS)was produced by daily brief and gradually increasing vestibular stimulation (training). The LDS resistance was accompanied by an increase in the number of desmosome-like junctions in the afferent axosomatic synapses. F-actin, the main component of desmosome-like contacts, has been suggested to be responsible for the increased resistance of M-cells to LDS. The purpose of the present study was to investigate the capacity of M-cells to adapt to LDS under the influence of ethanol, which alters the content of F-actin in cells. The experiments were carried out in goldfish fry. Vestibular stimulation (training and LDS) was performed in special drums that were rotated in two planes. The training time was increased from 1 min on day 1 to 30 min on day 30. For ethanol exposure, fish were immersed daily in a 2% ethanol solution for 20 min. To assess the level of resistance to LDS, motor activity indicating the functional state of M-cells was evaluated before and after LDS. The results show that exposure to ethanol reduces the resistance to LDS in both untrained and trained fish. Electron microscopic data demonstrated some structural changes in the synaptic endings located on M-cell soma in ethanol-exposed fish. Wrapping of boutons by cytoplasmic out- growths and myelin- like structures was observed. Morphometric analysis revealed that exposure to ethanol without training decreases the number of desmosome-like contacts, probably due to ethanol-induced depolymerization of cytoskeletal actin. Ethanol exposure also partly suppressed the increase in the number of desmosome-like contacts that occurs as a result of training. In ethanol-treated trained fish, however, a concomitant increase in the length of desmosome-like contacts was observed. As training alone leads to the formation of additional desmosome-like contacts of standard length, it is possible that although a sufficient amount of such structures cannot be formed in the M-cells of ethanol-exposed trained fish, the existing contacts can be elongated. Thus, possibly changes of the actin state are involved in the adaptation of M-cells to LDS.


1984 ◽  
Vol 160 (4) ◽  
pp. 1241-1246
Author(s):  
C Jones

Plant lectins are cytotoxic and can be used to select for mutants of animal cells that exhibit structural changes in cell surface carbohydrates reflecting glycosylation defects. We isolated eight lectin mutants of Chinese hamster ovary (CHO) cells that appear to represent three different phenotype classes. These lectin mutants were much more sensitive to the cytotoxic action of normal rabbit serum (NRS) than were the parental cells. This increased cytotoxicity was heat sensitive, specifically absorbed, and inhibited by simple and complex carbohydrates. No killing was observed under conditions in which only the alternate complement pathway was active. An NRS-resistant subclone that was isolated from one lectin mutant was shown to have also regained wild type behavior when tested with the lectins. The possibility that naturally occurring antibodies in rabbit serum are reacting with incomplete carbohydrate chains on the surface of the lectin mutants is discussed.


1977 ◽  
Vol 66 (1) ◽  
pp. 243-254 ◽  
Author(s):  
S. J. Zottoli

Stainless-steel electrodes were implanted near the left or right. Mauthner cells (M-cells) of goldfish to determine if these cells can initiate the startle reflex evoked by a brief sinusoidal sound stimulus. Recordings of the M-cell extracellular spike were obtained for the duration of 10 experiments. Fish with chronic implants were allowed to free-swim and exposed to at least 10 consecutive sound stimuli consisting of 2 cycles of 200 Hz. Seventy-three startle responses were analysed. In 34 cases the implanted M-cell electrode was contralateral to the contracting musculature, and in each of these cases, a M-cell spike preceded the EMG response by 1-1-2-1 ms. In the reamining 39 cases the electrode was ipsilateral to the active musculature, and the M-cell only fired in one of these trails. There were no startle responses and no M-cell firings in an additional 52 tests. Since the M-cell activates contralateral motoneurones, the results indicate it is responsible for initiation of the startle reflex.


2001 ◽  
Vol 114 (11) ◽  
pp. 2077-2083
Author(s):  
Hugues Lelouard ◽  
Alain Sahuquet ◽  
Hubert Reggio ◽  
Philippe Montcourrier

We have studied the M cell origin and differentiation pathway in rabbit gut-associated lymphoid tissues. Micro-dissected domes and epithelium isolated by ethylene diamine tetra acetic acid detachment allowed us to view the whole epithelial surface from the bottom of crypts to the top of domes. We used monoclonal antibodies specific to the apex of either M cells or dome enterocytes, lectins, and antibodies to vimentin in appendix, distal Peyer’s patches and caecal patches. The earliest vimentin-labeled M cells were observed in the BrdU-positive proliferative zone of dome-associated crypts. Gradual differentiation of the M cell vimentin cytoskeleton started at this site to progressively give rise to the first pocket-forming M cells in the upper dome. Therefore, these mitotic cells of the crypts appear as the direct precursors of M cells. In addition to an early appearance of M cell markers, a regular mosaic-like relative distribution of M cells and dome enterocytes was already detected in the vicinity of crypts, similar to that observed on the lateral surface of domes where functional M cells lie. This constant distribution implies that there is no trans-differentiation of enterocytes to M cells along the crypt-dome axis. Together, these observations provide very strong evidence in favor of an early commitment in crypts of M cell and enterocyte distinct lineages.


2016 ◽  
Author(s):  
Honoree Fleming

In 1998, we published a paper (Fleming et.al, 1998) describing some aspects of Ishikawa endometrial epithelial cell differentiation from monolayer cells into cells forming fluid-filled hemispheres called domes. The process begins with the dissolution of membranes within discrete regions of the monolayer. Nuclei from fused cells aggregate and endogenous biotin in particulate structures assumed to be mitochondria increase throughout the resulting syncytium. Endogenous biotin is also the distinguishing feature of a membrane that surrounds aggregates of multiple nuclei in a structure called a mitonucleon. The current paper includes additional observations on structural changes accompanying Ishikawa differentiation. Vacuoles form in the heterochromatin of the mitonucleon and within the biotin-containing double membrane surrounding heterochromatin. With the formation of vacuoles, the mitonucleon can be seen to rise along with the apical membrane of the syncytium in which it formed. The small vacuoles that form within the heterochromatin result in structures similar to “cells with optically clear nuclei” found in some cancers. The second larger vacuole that forms within the membrane surrounding the heterochromatin transforms the cell profile to one that resembles “signet ring” cells also observed in some cancers. Eventually the membrane surrounding the massed heterochromatin, generated three to four hours earlier, is breached and previously aggregated nuclei disaggregate. During this process heterochromatin in the mitonucleons undergoes changes usually ascribed to cells undergoing programmed cell death such as pyknosis and DNA fragmentation (Fleming, 2016b). The cells do not die, instead chromatin filaments appear to coalesce into a chromatin mass that gives rise to dome-filling nuclei by amitosis during the final three to four hours of the 20 hour differentiation (Fleming, 2016c).


1983 ◽  
Vol 3 (6) ◽  
pp. 1053-1061
Author(s):  
W H Lewis ◽  
P R Srinivasan

Metaphase chromosomes purified from a hydroxyurea-resistant Chinese hamster cell line were able to transform recipient wild-type cells to hydroxyurea resistance at a frequency of 10(-6). Approximately 60% of the resulting transformant clones gradually lost hydroxyurea resistance when cultivated for prolonged periods in the absence of drug. One transformant was subjected to serial selection in higher concentrations of hydroxyurea. The five cell lines generated exhibited increasing relative plating efficiency in the presence of the drug and a corresponding elevation in their cellular content of ribonucleotide reductase. The most resistant cell line had a 163-fold increase in relative plating efficiency and a 120-fold increase in enzyme activity when compared with the wild-type cell line. The highly hydroxyurea-resistant cell lines had strong electron paramagnetic resonance signals characteristic of an elevated level of the free radical present in the M2 subunit of ribonucleotide reductase. Two-dimensional electrophoresis of cell-free extracts from one of the resistant cell lines indicated that a 53,000-dalton protein was present in greatly elevated quantities when compared with the wild-type cell line. These data suggest that the hydroxyurea-resistant cell lines may contain an amplification of the gene for the M2 subunit of ribonucleotide reductase.


2020 ◽  
Vol 21 (5) ◽  
pp. 1656
Author(s):  
Mohammed O. Altonsy ◽  
Anutosh Ganguly ◽  
Matthias Amrein ◽  
Philip Surmanowicz ◽  
Shu Shun Li ◽  
...  

Microtubules (MTs), microfilaments, and intermediate filaments, the main constituents of the cytoskeleton, undergo continuous structural changes (metamorphosis), which are central to cellular growth, division, and release of microvesicles (MVs). Altered MTs dynamics, uncontrolled proliferation, and increased production of MVs are hallmarks of carcinogenesis. Class III beta-tubulin (β3-tubulin), one of seven β-tubulin isotypes, is a primary component of MT, which correlates with enhanced neoplastic cell survival, metastasis and resistance to chemotherapy. We studied the effects of β3-tubulin gene silencing on MTs dynamics, cell cycle, and MVs release in human malignant melanoma cells (A375). The knockdown of β3-tubulin induced G2/M cell cycle arrest, impaired MTs dynamics, and reduced spontaneous MVs release. Additional studies are therefore required to elucidate the pathophysiologic and therapeutic role of β3-tubulin in melanoma.


Sign in / Sign up

Export Citation Format

Share Document