scholarly journals Isolation of plasma and nuclear membranes of thymocytes. I. Enzymatic composition and ultrastructure

1978 ◽  
Vol 77 (1) ◽  
pp. 211-231 ◽  
Author(s):  
A Monneron ◽  
J d'Alayer

The purpose of this work was to isolate thymocyte plasma membranes at high yield and purity to study specific surface molecules in their structural context. A procedure was developed in which 92-95% of the cells were disrupted by homogenization in a dense viscous medium, while nuclei remained intact. Differential centrifugation of the homogenate was avoided; instead, only a brief (2 h) centrifugation at equilibrium-density of membrane components was used. Five fractions were obtained, three by flotation. Membrane-bound enzymatic activities indicated a 60-80% yield of plasma membranes in the three floated membrane fractions, which comprised 1.6% of the homogenate protein. Enrichment factors for three ectoenzymes, alkaline phosphatase, gamma-glutamyltransferase, and ouabain-sensitive adenosine triphosphatase were respectively, 70-74, and 40-50 in the two lightest fractions. Nuclear membranes were then isolated from the remaining whole nuclei and were found to be enriched in esterase and NADH-cytochrome c reductase. Plasma membranes and light nuclear membranes appeared as pure unit-membrane vesicles in thin sections and freeze-etching electron microscopy. Some aggregation of intramembranous particles occurred in plasma membrane vesicles.

1980 ◽  
Vol 86 (1) ◽  
pp. 21-28 ◽  
Author(s):  
M S Klempner ◽  
R B Mikkelsen ◽  
D H Corfman ◽  
J André-Schwartz

Neutrophil chemotaxis, phagocytosis, and oxygen-dependent microbicidal activity are initiated by interactions of stimuli with the plasma membrane. However, difficulties in neutrophil plasma membrane isolation have precluded studies on the precise structure or function of this cellular component. In this paper, a method is described for the isolation of representative human neutrophil plasma membrane vesicles, using nitrogen cavitation for cell disruption and a combination of differential centrifugation and equilibrium ultracentrifugation in Dextran gradients for membrane fractionation. Multiple biochemical markers and galactose oxidase-tritiated sodium borohydride surface labeling were employed to follow the yield, purity, and distribution of plasma membranes, nuclei, lysosomes, endoplasmic reticulum, mitochondria, and cytosol. According to these markers, neutrophil plasma membranes were exposed to minimal lysosomal hydrolytic enzymes and could be isolated free of other subcellular organelles. In contrast, disruption of neutrophils by mechanical homogenization resulted in > 20% lysosomal rupture and significant plasma membrane proteolysis. Electron microscopy demonstrated that plasma membranes isolated after nitrogen cavitation appeared to be sealed vesicles with striking homogeneity.


Author(s):  
Nikolas K. Teiwes ◽  
Ingo Mey ◽  
Phila C. Baumann ◽  
Lena Strieker ◽  
Ulla Unkelbach ◽  
...  

1996 ◽  
Vol 314 (2) ◽  
pp. 469-475 ◽  
Author(s):  
R. Alexander BLACKWOOD ◽  
James E. SMOLEN ◽  
Ronald J. HESSLER ◽  
Donna M. HARSH ◽  
Amy TRANSUE

Several models have been developed to study neutrophil degranulation. At the most basic level, phospholipid vesicles have been used to investigate the lipid interactions occurring during membrane fusion. The two major forms of assays used to measure phospholipid vesicle fusion are based either on the dilution of tagged phospholipids within the membrane of the two fusing partners or the mixing of the aqueous contents of the vesicles. Although problems exist with both methods, the latter is considered to be more accurate and representative of true fusion. Using 8-aminonaphthalene-1,3,6-trisulphonic acid (ANTS) as a fluorescent marker, we have taken advantage of the quenching properties of p-xylenebispyridinium bromide (‘DPX’) to develop a simple aqueous-space mixing assay that can be used with any sealed vesicle. We compared our new assay with more conventional assays using liposomes composed of phosphatidic acid (PA) and phosphatidylethanolamine (PE), obtaining comparable results with respect to Ca2+-dependent fusion. We extended our studies to measure the fusion of neutrophil plasma-membrane vesicles as well as azurophil and specific granules with PA/PE (1:3) liposomes. Both specific granules and plasma-membrane vesicles fused with PA/PE liposomes at [Ca2+] as low as 500 μM, while azurophil granules showed no fusion at [Ca2+] as high as 12 mM. These differences in the ability of Ca2+ to induce fusion may be related to differences observed in whole cells with respect to secretion.


1977 ◽  
Vol 168 (2) ◽  
pp. 187-194 ◽  
Author(s):  
D Thom ◽  
A J Powell ◽  
C W Lloyd ◽  
D A Rees

1. A method was developed which allows the rapid preparation of pure plasma membranes in high yield from cultured fibroblasts. 2. Cells are lysed in hypo-osmotic borate/EDTA and, after differential centrifugation, the membranes collected by centrifugation on a sucrose barrier. 3. Electron microscopy of the isolated material shows large membrane vesicles essentially free from contaminating organelles. 4. There is no detectable activity of the endoplasmic-reticulum enzyme marker, NADH2—lipoamide oxidoreductase (EC 1.6.4.3), and that of succinate dehydrogenase (EC 1.3.99.1), a marker for mitochondria, is substantially decreased. Chemical compositions are in good agreement with previous observations. 5. This study confirms the usefulness of applied isotopic markers for isolating plasma membranes.


1998 ◽  
Vol 275 (4) ◽  
pp. C995-C1008 ◽  
Author(s):  
Christie Cefaratti ◽  
Andrea Romani ◽  
Antonio Scarpa

The plasma membrane of mammalian cells possesses rapid Mg2+ transport mechanisms. The identity of Mg2+ transporters is unknown, and so are their properties. In this study, Mg2+ transporters were characterized using a biochemically and morphologically standardized preparation of sealed rat liver plasma membranes (LPM) whose intravesicular content could be set and controlled. The system has the advantages that it is not regulated by intracellular signaling machinery and that the intravesicular ion milieu can be designed. The results indicate that 1) LPM retain trapped intravesicular total Mg2+with negligible leak; 2) the addition of Na+ or Ca2+ induces a concentration- and temperature-dependent efflux corresponding to 30–50% of the intravesicular Mg2+; 3) the rate of flux is very rapid (137.6 and 86.8 nmol total Mg2+ ⋅ μm−2 ⋅ min−1after Na+ and Ca2+ addition, respectively); 4) coaddition of maximal concentrations of Na+ and Ca2+ induces an additive Mg2+ efflux; 5) both Na+- and Ca2+-stimulated Mg2+ effluxes are inhibited by amiloride, imipramine, or quinidine but not by vanadate or Ca2+ channel blockers; 6) extracellular Na+ or Ca2+ can stimulate Mg2+ efflux in the absence of Mg2+ gradients; and 7) Mg2+ uptake occurs in LPM loaded with Na+ but not with Ca2+, thus indicating that Na+/Mg2+but not Ca2+/Mg2+exchange is reversible. These data are consistent with the operation of two distinct Mg2+ transport mechanisms and provide new information on rates of Mg2+ transport, specificity of the cotransported ions, and reversibility of the transport.


1992 ◽  
Vol 47 (11-12) ◽  
pp. 929-931 ◽  
Author(s):  
Antonio del Castillo-Olivares ◽  
Javier Márquez ◽  
Ignacio Núñez de Castro ◽  
Miguel Angel Medina

Ehrlich cell plasma membrane vesicles have a ferricyanide reductase activity that shows two phases. These two phases were kinetically characterized. Evidence is presented for a differential effect of trypsin on both phases


1997 ◽  
Vol 273 (4) ◽  
pp. G842-G848 ◽  
Author(s):  
Sunil Mukhopadhayay ◽  
M. Ananthanarayanan ◽  
Bruno Stieger ◽  
Peter J. Meier ◽  
Frederick J. Suchy ◽  
...  

Adenosine 3′,5′-cyclic monophosphate (cAMP), acting via protein kinase A, increases transport maximum of Na+-taurocholate cotransport within 15 min in hepatocytes (S. Grüne, L. R. Engelking, and M. S. Anwer. J. Biol. Chem. 268: 17734–17741, 1993); the mechanism of this short-term stimulation was investigated. Cycloheximide inhibited neither basal nor cAMP-induced increases in taurocholate uptake in rat hepatocytes, indicating that cAMP does not stimulate transporter synthesis. Studies in plasma membrane vesicles showed that taurocholate uptake was not stimulated by the catalytic subunit of protein kinase A but was higher when hepatocytes were pretreated with cAMP. Immunoblot studies with anti-fusion protein antibodies to the cloned Na+-taurocholate cotransport polypeptide (Ntcp) showed that pretreatment of hepatocytes with cAMP increased Ntcp content in plasma membranes but not in homogenates. Ntcp was detected in microsomes, endosomes, and Golgi fractions, and cAMP pretreatment resulted in a decrease only in endosomal Ntcp content. It is proposed that cAMP increases transport maximum of Na+-taurocholate cotransport, at least in part, by translocating Ntcp from endosomes to plasma membranes.


1980 ◽  
Vol 239 (3) ◽  
pp. C66-C74 ◽  
Author(s):  
A. K. Grover ◽  
C. Y. Kwan ◽  
J. Crankshaw ◽  
D. J. Crankshaw ◽  
R. E. Garfield ◽  
...  

A gradient has been designed to yield two subfractions of plasma membrane vesicles from rat myometrium, a low buoyant density (8-24% sucrose) fraction N1 richer in 5'-nucleotidase and a higher buoyant density (24-30% sucrose) fraction N2, instead of a previously described fraction F1. Both N1 and N2 had very low activities of NADPH-cytochrome c reductase and succinate-cytochrome c reductase. Electron micrographs of thin sections of N1 showed clear vesicles, whereas N2 consisted of vesicles with electron-dense bodies attached to them. These plasma membrane vesicles can actively take up Ca. The active uptake of Ca was potentiated by oxalate and phosphate and abolished by the Ca ionophore A23187. Dilution of actively loaded vesicles in isotonic media containing EGTA led to loss of a small proportion of the stored Ca instantaneously and the remainder more slowly in a biphasic manner. Dilution in hypotonic media with EGTA led to a release of a much larger proportion of the accumulated Ca. A23187 at high concentrations (10 microM) caused a release of all the sequestered Ca whether the active Ca uptake had been carried out in the presence or in the absence of oxalate. A23187, 0.5 microM, released all the sequestered Ca from the vesicles that were actively loaded in the absence of oxalate, but only 37% when the vesicles were actively loaded with Ca in the presence of oxalate. Comparison of the composite plasma membrane fraction F1 (8-30% sucrose) and the subfractions N1 and N2 showed that they had different capacities for Ca uptake in the presence and absence of ATP. An attempt has been made to analyze the active Ca-uptake data in terms of various Ca pools.


The ultra-structure of the developing notochord in urodele embryos, from the neurula to young tadpole stages, has been studied in thin sections. The first part of the paper is con­cerned with the intercellular membranes, the second with intracellular structures. In neurula stages the notochord cells are in rather loose contact, and gaps of considerable size occur between them. In tailbud stages, the cells become much more closely apposed, the surface of contact being usually thrown into slight waves or bumps; when sectioned normally it appears as two closely adherent profiles. In later tailbud stages the plasma membranes of the cells begin to fall apart again. The first sign of this is the appearance of small vesicles whose form suggests that fluid is being secreted into the intercellular spaces. These membrane vesicles increase considerably in numbers, but not in average dimensions(diameter about 500 to 700 Å). It is concluded that the increase in the closeness of associa­tion between contiguous cell membranes, which is seen during the early stages of chordagenesis, might provide the motive force which brings about the morphogenesis of the organ, as has been suggested earlier. The later separation of the cell membranes, with the appearance of membrane vesicles, is an unexpected phenomenon the significance of which is not clear. At the beginning of the period, the cells are of an undifferentiated embryonic type; by the end of it they have acquired a specific histological character, involving the appearance of large fluid-filled intracellular vacuoles, the formation of a notochordal sheath and other features. During the course of differentiation, two different types of ergastoplasm make their appearance one after another. The first is associated with the formation of the fluid-filled vacuoles; the second with the formation of the sheath ; and an ergastoplasm resembling the second chordal type is also found in the mesenchyme cells which lie against the external surface of the sheath. All three ergastoplasms are continuous with the nuclear envelope at the time when they are rapidly increasing in size; and it seems probable that they are directly derived from the outer member of the nuclear envelope. Golgi elements, mitochondria and various other types of granule (‘multi-vesiculate bodies') are also found. In the early stages the body of the nucleus is often penetrated by long cytoplasmic processes. It is suggested that these may arise when the new nuclear envelope is being formed at telophase. It is argued that the morphologically characteristic types of ergastoplasm found in different types of cell, and at different stages during the development of a given type of cell, are probably not merely consequences of the particular type of synthesis proceeding, since they appear before such synthesis can have got very far; it seems more probable that the ultra-microscopic morphology of the nuclear envelope and ergastoplasm is a visible expres­sion of the nature of the synthetic machinery. The functions of these structures might either be to increase the efficiency of the nuclear control of cytoplasmic processes, or to contribute to the co-ordination between the various different synthetic processes which must be involved in differentiation.


1997 ◽  
Vol 321 (2) ◽  
pp. 487-495 ◽  
Author(s):  
Peter J. A. van den BROEK ◽  
Angeline E. van GOMPEL ◽  
Marijke A. H. LUTTIK ◽  
Jack T. PRONK ◽  
Carla C. M. van LEEUWEN

Transport of glucose and maltose was studied in plasma-membrane vesicles from Candida utilis. The yeast was grown on a mixture of glucose and maltose in aerobic carbon-limited continuous cultures which enabled transport to be studied for both sugars with the same vesicles. Vesicles were prepared by fusion of isolated plasma membranes with proteoliposomes containing bovine heart cytochrome coxidase as a proton-motive-force-generating system. Addition of reduced cytochrome cgenerated a proton-motive force, consisting of a membrane potential, negative inside, and a pH gradient, alkaline inside. Energization led to accumulation of glucose and maltose in these vesicles, reaching accumulation ratios of about 40Ő50. Accumulation also occurred in the presence of valinomycin or nigericin, but was prevented by a combination of the two ionophores or by uncoupler, showing that glucose and maltose transport are dependent on the proton-motive force. Comparison of sugar accumulation with quantitative data on the proton-motive force indicated a 1:1 H+/sugar stoichiometry for both transport systems. Efflux of accumulated glucose was observed on dissipation of the proton-motive force. Exchange and counterflow experiments confirmed the reversible character of the H+Őglucose symporter. In contrast, uncoupler or a mixture of valinomycin plus nigericin induced only a slow efflux of accumulated maltose. Moreover under counterflow conditions, the expected transient accumulation was small. Thus the H+Őmaltose symporter has some characteristics of a carrier that is not readily reversible. It is concluded that in C. utilisthe transport systems for glucose and maltose are both driven by the proton-motive force, but the mechanisms are different.


Sign in / Sign up

Export Citation Format

Share Document