scholarly journals In vivo effect of colchicine on hepatic protein synthesis and on the conversion of proalbumin to serum albumin

1978 ◽  
Vol 77 (2) ◽  
pp. 400-416 ◽  
Author(s):  
CM Redman ◽  
D Banerjee ◽  
C Manning ◽  
CY Huang ◽  
K Green

Treatment of rats with 0.5-25 mumol/100 g body weight of colchicine for 1 h or more caused an inhibition of hepatic protein synthesis. This effect was not seen if animals were exposed to colchicine for less than 1 h. The delayed inhibition of protein synthesis affected both secretory and nonsecretory proteins. Treatment with colchicine (15 mumol/100 g) for 1 h or more caused the RNA content of membrane-bound polysomes to fall but did not change the polysomal profile of this fraction. By contrast, the total RNA content in the free polysome cell fraction was increased, and this was due to the presence of more ribosomal monomers and dimers. Electron microscope examination of the livers from rats treated for 3 h with colchicine showed an accumulation of secretory vesicles within the hepatocytes and a general distention of the endoplasmic reticulum. Administration of radioactive L-leucine to the rats led to an incorporation of radioactivity into two forms of intracellular albumin which were precipitable with antiserum to rat serum albumin but which were separable by diethylaminoethyl-cellulose chromatography. One form has arginine at the amino-terminal position and is proalbumin, and the other form, which more closely resembles serum albumin chromatographically, has glutamic acid at its amino terminus. Only proalbumin was found in rough and smooth endoplasmic reticulum fractions and in a Golgi cell fraction wich corresponds morphologically to mostly empty and partially filled secretory vesicles. However, in other Golgi cell fractions which were filled with secretory products, both radioactive proalbumin and serum albumin were found. This indicates that proalbumin is converted to serum albumin in these secretory vesicles just before exocytosis. Colchicine delayed the discharge of radioactive albumin from these filled secretory vesicles and caused an accumulation of both proalbumin and serum albumin within these cell fractions.

1992 ◽  
Vol 117 (6) ◽  
pp. 1161-1169 ◽  
Author(s):  
JL Dixon ◽  
R Chattapadhyay ◽  
T Huima ◽  
CM Redman ◽  
D Banerjee

Our previous studies showed that in hepatic RER of young chickens, nascent apoAI is not associated with lipoprotein particles and only becomes part of these lipoprotein structures in the Golgi. In this study, we have used three different methodologies to determine the locations of apoAI and apoB in the RER and compared them to that of albumin. Immunoelectron microscopic examination of the RER cell fractions showed that both apoAI and apoB were associated only with the RER membrane whereas albumin was located both within the lumen and on the limiting membrane of the vesicles. To examine the possibility of membrane integration of nascent apoAI and apoB in the RER, we administered L-[3H]leucine to young chickens for 10 min, isolated RER, treated this cell fraction with buffers of varying pH, and measured the release of radioactive albumin, apoAI, and apoB. The majority of nascent apoAI (64%), nascent apoB (100%), and nascent albumin (97%) was released from RER vesicles at pH 11.2, suggesting that, like albumin, apolipoproteins are not integrated within the membrane. To determine if nascent apoproteins are exposed to the cytoplasmic surface, we administered L-[3H]leucine to young chickens and at various times isolated RER and Golgi cell fractions. Radioactive RER and Golgi cell fractions were treated with exogenous protease and the percent of nascent apoAI and apoB accessible to proteolysis was determined and compared to that of albumin. At 5, 10, and 20 min of labeling, 35-56% of nascent apoAI and 60-75% of apoB in RER were degraded, while albumin was refractive to this treatment. At all times both apolipoproteins and albumin present in Golgi cell fractions were protected from proteolysis. These biochemical and morphological findings indicate that apoAI and apoB are associated with the rough microsomal membrane and are partially exposed to the cytoplasmic surface at early stages of secretion. They may later enter the luminal side of the ER and, on entering the Golgi, form lipoprotein particles.


1984 ◽  
Vol 99 (6) ◽  
pp. 1917-1926 ◽  
Author(s):  
D Banerjee ◽  
C M Redman

To study the assembly of newly synthesized lipids with apoprotein A1, we administered [2-3H]glycerol to young chickens and determined the hepatic intracellular sites of lipid synthesis and association of nascent lipids with apoprotein A1. [2-3H]glycerol was rapidly incorporated into hepatic lipids, reaching maximal levels at 5 min, and this preceded the appearance of lipid radioactivity in the plasma. The liver was fractionated into rough and smooth endoplasmic reticulum and Golgi cell fractions. The isolated cell fractions were further subfractionated into membrane and soluble (content) fractions by treatment with 0.1 M Na2CO3, pH 11.3. At various times, the lipid radioactivity was measured in each of the intracellular organelles, in immunoprecipitable apoprotein A1, and in materials that floated at buoyant densities similar to those of plasma lipoproteins. Maximal incorporation occurred at 1 min in the rough endoplasmic reticulum, at 3-5 min in the smooth endoplasmic reticulum, and at 5 min in the Golgi cell fractions. The majority (66-93%) of radioactive glycerol was incorporated into triglycerides with smaller (4-27%) amounts into phospholipids. About 80% of the lipid radioactivity in the endoplasmic reticulum and 70% of that in the Golgi cell fractions was in the membranes. The radioactive lipids in the content subfraction were distributed in various density classes with most nascent lipids floating at a density less than or equal to 1.063 g/ml. Apoprotein A1 from the Golgi apparatus, obtained by immunoprecipitation, contained sixfold more nascent lipids than did that from the endoplasmic reticulum. These data indicate that [2-3H]glycerol is quickly incorporated into lipids of the endoplasmic reticulum and the Golgi cell fractions, that most of the nascent lipids are conjugated with apoproteins A1 in the Golgi apparatus, and that very little association of nascent lipid to apoprotein A1 occurs in the endoplasmic reticulum.


Author(s):  
Roy Skidmore

The long-necked secretory cells in Onchidoris muricata are distributed in the anterior sole of the foot. These cells are interspersed among ciliated columnar and conical cells as well as short-necked secretory gland cells. The long-necked cells contribute a significant amount of mucoid materials to the slime on which the nudibranch travels. The body of these cells is found in the subepidermal tissues. A long process extends across the basal lamina and in between cells of the epidermis to the surface of the foot. The secretory granules travel along the process and their contents are expelled by exocytosis at the foot surface.The contents of the cell body include the nucleus, some endoplasmic reticulum, and an extensive Golgi body with large numbers of secretory vesicles (Fig. 1). The secretory vesicles are membrane bound and contain a fibrillar matrix. At high magnification the similarity of the contents in the Golgi saccules and the secretory vesicles becomes apparent (Fig. 2).


2007 ◽  
Vol 30 (4) ◽  
pp. 84
Author(s):  
Michael D. Jain ◽  
Hisao Nagaya ◽  
Annalyn Gilchrist ◽  
Miroslaw Cygler ◽  
John J.M. Bergeron

Protein synthesis, folding and degradation functions are spatially segregated in the endoplasmic reticulum (ER) with respect to the membrane and the ribosome (rough and smooth ER). Interrogation of a proteomics resource characterizing rough and smooth ER membranes subfractionated into cytosolic, membrane, and soluble fractions gives a spatial map of known proteins involved in ER function. The spatial localization of 224 identified unknown proteins in the ER is predicted to give insight into their function. Here we provide evidence that the proteomics resource accurately predicts the function of new proteins involved in protein synthesis (nudilin), protein translocation across the ER membrane (nicalin), co-translational protein folding (stexin), and distal protein folding in the lumen of the ER (erlin-1, TMX2). Proteomics provides the spatial localization of proteins and can be used to accurately predict protein function.


Immunity ◽  
2001 ◽  
Vol 15 (3) ◽  
pp. 467-476 ◽  
Author(s):  
Doriana Fruci ◽  
Gabriele Niedermann ◽  
Richard H Butler ◽  
Peter M van Endert

Sign in / Sign up

Export Citation Format

Share Document