scholarly journals Hormonal modulation of ovarian interstitial cells with particular reference to gap junctions.

1979 ◽  
Vol 81 (1) ◽  
pp. 104-114 ◽  
Author(s):  
R C Burghardt ◽  
E Anderson

Thin-section and freeze-fracture studies on the rat ovarian interstitial cells revealed reductions in the size and the number of gap junctions after pituitary ablation. Small gap junctions, however, persist as long as 90 days after hypophysectomy even though regressive cytoplasmic changes are completed 75 d earlier. Administration of exogenous human chorionic gonadotrophin (HCG) results in the restoration of the normal interstitial cell morphology which is accompanied by amplification of junctional membrane. Within 24 h of hormone application, gap junction growth is characterized by the appearance of formation plaques. These studies suggest that the effect of hormone on interstitial cell gap junctions is to modulate the junctional surface area.

1976 ◽  
Vol 22 (2) ◽  
pp. 427-434
Author(s):  
F. Mazet ◽  
J. Cartaud

The freeze-fracturing technique was used to characterize the junctional devices involved in the electrical coupling of frog atrial fibres. These fibres are connected by a type of junction which can be interpreted as a morphological variant of the “gap junction” or “nexus”. The most characteristic features are rows of 9-nm junctional particles forming single or anastomosed circular profiles on the inner membrane face, and corresponding pits on the outer membrane face. Very seldom aggregates consisting of few geometrically disposed 9-nm particles are found. The significance of the junctional structures in the atrial fibres is discussed, with respect to present knowledge about junctional features of gap junctions in various tissues, including embryonic ones.


1985 ◽  
Vol 101 (5) ◽  
pp. 1741-1748 ◽  
Author(s):  
T M Miller ◽  
D A Goodenough

Gap junctions are known to present a variety of different morphologies in electron micrographs and x-ray diffraction patterns. This variation in structure is not only seen between gap junctions in different tissues and organisms, but also within a given tissue. In an attempt to understand the physiological meaning of some aspects of this variability, gap junction structure was studied following experimental manipulation of junctional channel conductance. Both physiological and morphological experiments were performed on gap junctions joining stage 20-23 chick embryo lens epithelial cells. Channel conductance was experimentally altered by using five different experimental manipulations, and assayed for conductance changes by observing the intercellular diffusion of Lucifer Yellow CH. All structural measurements were made on electron micrographs of freeze-fracture replicas after quick-freezing of specimens from the living state; for comparison, aldehyde-fixed specimens were measured as well. Analysis of the data generated as a result of this study revealed no common statistically significant changes in the intrajunctional packing of connexons in the membrane plane as a result of experimental alteration of junctional channel conductance, although some of the experimental manipulations used to alter junctional conductance did produce significant structural changes. Aldehyde fixation caused a dramatic condensation of connexon packing, a result not observed with any of the five experimental uncoupling conditions over the 40-min time course of the experiments.


1995 ◽  
Vol 268 (4) ◽  
pp. C968-C977 ◽  
Author(s):  
R. Lal ◽  
S. A. John ◽  
D. W. Laird ◽  
M. F. Arnsdorf

Current structural models of gap junctions indicate two apposed plasma membranes with hexagonally packed hemichannels in each membrane aligning end to end. These channels connect the cytoplasms of contacting cells. Images of isolated rat heart gap junctions have been made with the atomic force microscope in aqueous media. We show that native cardiac gap junctions have a thickness of 25 +/- 0.6 nm. This decreases to 17 nm when they are treated with trypsin, which is known to remove some cytoplasmic components of connexin 43. Imaging shows subunits with a center to center spacing of approximately 9-10 nm and long range hexagonal packing, measurements in agreement with studies using freeze-fracture and negative-stain electron microscopy. In addition to gap junctions, we imaged structures that had all the characteristics of native gap junctions except their thickness was limited to 9-11 nm. They also show long range hexagonal packing and center to center spacing of 9-10 nm. These structures decrease in thickness, to 6-9 nm, when treated with trypsin. We have called these structures hemiplaques. They appear to be present endogenously in the preparation, as we have ruled out their being an artifact of imaging by AFM. However, it remains to be determined if they are a consequence of the procedure used in isolating gap junctions or a possible intermediary in gap junction formation.


2007 ◽  
Vol 292 (3) ◽  
pp. G734-G745 ◽  
Author(s):  
E. E. Daniel ◽  
Ahmed El Yazbi ◽  
Marco Mannarino ◽  
Gary Galante ◽  
Geoffrey Boddy ◽  
...  

Varicosities of nitrergic and other nerves end on deep muscular plexus interstitial cells of Cajal or on CD34-positive, c- kit-negative fibroblast-like cells. Both cell types connect to outer circular muscle by gap junctions, which may transmit nerve messages to muscle. We tested the hypotheses that gap junctions transmit pacing messages from interstitial cells of Cajal of the myenteric plexus. Effects of inhibitors of gap junction conductance were studied on paced contractions and nerve transmissions in small segments of circular muscle of mouse intestine. Using electrical field stimulation parameters (50 V/cm, 5 pps, and 0.5 ms) which evoke near maximal responses to nitrergic, cholinergic, and apamin-sensitive nerve stimulation, we isolated inhibitory responses to nitrergic nerves, inhibitory responses to apamin-sensitive nerves and excitatory responses to cholinergic nerves. 18β-Glycyrrhetinic acid (10, 30, and 100 μM), octanol (0.1, 0.3, and 1 mM) and gap peptides (300 μM of40Gap27,43Gap26,37,43Gap27) all failed to abolish neurotransmission. 18β-Glycyrrhetinic acid inhibited frequencies of paced contractions, likely owing to inhibition of l-type Ca2+channels in smooth muscle, but octanol or gap peptides did not. 18β-Glycyrrhetinic acid and octanol, but not gap peptides, reduced the amplitudes of spontaneous and nerve-induced contractions. These reductions paralleled reductions in contractions to exogenous carbachol. Additional experiments with gap peptides in both longitudinal and circular muscle segments after NG-nitro-l-arginine and TTX revealed no effects on pacing frequencies. We conclude that gap junction coupling may not be necessary for pacing or nerve transmission to the circular muscle of the mouse intestine.


1982 ◽  
Vol 93 (2) ◽  
pp. 247-NP ◽  
Author(s):  
H. M. Charlton ◽  
Dilys Parry ◽  
D. M. G. Halpin ◽  
R. Webb

Hypogonadal mice are deficient in LH releasing hormone (LH-RH), the releasing factor for LH and FSH, with a consequent failure of postnatal ovarian and testicular development. After intravenous injection of hypogonadal females with 125I-labelled human chorionic gonadotrophin (hCG), followed by autoradiography of semi-thin (1 μm) slices of the ovary, labelled hCG was found to be associated with interstitial cells and thecal cells with little or no labelling of granulosa cells. Labelled human FSH was associated solely with granulosa cells. Hypogonadal females, implanted for 5 days with a silicone elastomer capsule of oestrogen, showed a similar response to that of normal females with hCG labelling of the granulosa cells of the larger follicles as well as of the thecal cell layer. Furthermore, subcutaneous injection of hypogonadal females with LH-RH (50 ng), 12 times daily for 5 days, increased uterine weight and stimulated ovarian development with some large follicles binding hCG to both thecal and granulosa cells. Therefore stimulation of follicular development may possibly be associated with increased oestradiol concentrations. In the male, after injection of 125I-labelled hCG, silver grains were associated with the interstitial cells alone in both hypogonadal and normal mice. Labelled human FSH was undetectable in semi-thin testicular sections, but the mode of injection (intravenous) may not have allowed enough labelled hormone to reach the testis in order to resolve the question as to whether the hypogonadal or normal testis can bind FSH.


1958 ◽  
Vol 16 (3) ◽  
pp. 310-325 ◽  
Author(s):  
SARAH S. HENRY ◽  
H. B. van DYKE

SUMMARY 1. The antibodies produced in rabbits in response to purified preparations of sheep interstitial cell stimulating hormone (ICSH) have been studied by the Ouchterlony technique for the analysis of precipitins. It has been possible to identify the ICSH precipitin in vitro. 2. The antibody to sheep ICSH forms precipitin bands with sheep ICSH and with ox ICSH, but not with hog ICSH or with human chorionic gonadotrophin (HCG). 3. Antiserum to sheep ICSH, absorbed so that a single demonstrable antibody is present, inhibits the biological effect of sheep and of ox ICSH but not of hog ICSH or of HCG. This antiserum did not interfere with the action of endogenous rat ICSH. 4. There was no cross-reaction demonstrable between the sheep ICSH antigen-antibody system and the pneumococcus polysaccharide type XIV system as has been reported for the antigen-antibody system of HCG. 5. Two attempts to repeat the method of Takeda, Otsuka & Noda [1952] for the preparation of crystalline ox ICSH were unsuccessful.


Author(s):  
J.F. David-Ferreira ◽  
K.L. David-Ferreira ◽  
M.H. Miranda ◽  
J.C. Lemos

The testis interstitial cells of the rat are closely associated forming small aggregates in the vicinity of the vessels. The finality of the present study is to analise the relationship between the interstitial cells and to describe some particularities of their junctions.The observations were made in thin sections from testis of 2 to 3 months old rats fixed by immersion or perfusion with 2 to 3% glutaral- dehyde in s-collidine or cacodylate buffer followed by 2% osmium tetro-xyde in the same buffers. Some specimens have been prepared following the technique of Shea. The thin sections obtained after embedding in Epon were double stained in uranyl acetate and lead citrate. For the cryofracture study the tissues were fixed in 3% glutaraldehyde in cacodylate buffer, impregnated in 28% glycerol, frozen in Freon 22 and stored in liquid nitrogen. Freeze fracture and platinum-carbon shadowing were done in a Balzers 300.


Author(s):  
J. David Robertson ◽  
M.J. Costello ◽  
T.J. McIntosh

The lens of the eye consists of closely adherent greatly elongated flattened narrow fiber cells that are electrically coupled by gap junctions. In thin sections the 100-150 Å intermembrane space usually seen in tissues between adjacent cells is greatly reduced between adjacent fiber cells. Freeze-fracture-etch (FFE) studies have demonstrated gap junctions between fiber cells. Several workers have observed expanses of square crystallinity in fiber cell membranes with a lattice constant of 6-7 nm. This has usually been attributed variously to artifact induced by calcium, pH or proteolytic enzymatic digestion. Square arrays have been seen in isolated fractions of fiber cell membranes prepared with detergents as minor components and dismissed as relatively insignificant and either related or unrelated to gap junctions. Some have regarded them as a form of gap junction.


1994 ◽  
Vol 107 (4) ◽  
pp. 799-811 ◽  
Author(s):  
S. Bassnett ◽  
J.R. Kuszak ◽  
L. Reinisch ◽  
H.G. Brown ◽  
D.C. Beebe

Results of electrical, dye-coupling and morphological studies have previously suggested that gap junctions mediate communication between the anterior epithelium of the lens and the underlying lens fiber cells. This connection is believed to permit ‘metabolic cooperation’ between these dissimilar cell types and may be of particular importance to the fiber cells, which are thought incapable of autonomous ionic homeostasis. We reinvestigated the nature of the connection between epithelial and fiber cells of the embryonic chicken lens using fluorescence confocal microscopy and freeze-fracture analysis. In contrast to earlier studies, our data provided no support for gap-junction-mediated transport from the lens epithelium to the fibers. Fluorescent dyes loaded biochemically into the lens epithelium were retained there for more than one hour. There was a decrease in epithelial fluorescence over this period, but this was not accompanied by an increase in fiber cell fluorescence. Diffusional modeling suggested that these data were inconsistent with the presence of extensive epithelium-fiber cell coupling, even if the observed decrease in epithelial fluorescence was attributed exclusively to the diffusion of dye into the fiber mass via gap junctions. Furthermore, the rate of loss of fluorescence from isolated epithelia was indistinguishable from that measured in whole lenses, suggesting that decreased epithelial fluorescence resulted from photobleaching and leakage of dye rather than diffusion, via gap junctions, into the fibers. Analysis of freeze-fracture replicas of plasma membranes at the epithelial-fiber cell interface failed to reveal evidence of gap-junction plaques, although evidence of endocytosis was abundant. These studies were done under conditions where the location of the fracture plane was unambiguous and where gap junctions could be observed in the lateral membranes of neighboring epithelial and fiber cells. Paradoxically, tracer molecules injected into the fiber mass were able to pass into the epithelium via a pathway that was not blocked by incubation at 4 degrees C or by treatment with octanol and which excluded large (approximately 10 kDa) molecular mass tracers. Together with previous measurements of electrical coupling between fiber cells and epithelial cells, these data indicate the presence of a low-resistance pathway connecting these cell types that is not mediated by classical gap junctions.


1995 ◽  
Vol 108 (12) ◽  
pp. 3725-3734 ◽  
Author(s):  
N.M. Kumar ◽  
D.S. Friend ◽  
N.B. Gilula

Gap junctional communication is important in many physiological processes, including growth control, patterning, and the synchronization of cell-to-cell activities. It has been difficult to study the synthesis and assembly of gap junctions due to their low abundance. To overcome this limitation, baby hamster kidney cells (BHK) have been transfected with a human beta 1 (Cx32) connexin cDNA construct. Expression was placed under the control of the mouse metallothionein promoter that can be induced by heavy metals. The transfected cells were characterized by DNA, RNA and protein analysis, as well as by scrape loading to detect functional channels. Functional beta 1 connexin was detected only in cells transfected with beta 1 connexin cDNA in the correct orientation (beta 1-BHK). Analysis of the cells by light microscopic immunocytochemistry indicated that beta 1 connexin antigen was localized to the plasma membrane and to several intracellular compartments. Characterization with thin section electron microscopy revealed extensive areas of assembled double membrane gap junctions between cells (on the cell surface), in the endoplasmic reticulum (ER), and the nuclear envelope. This unusual intracellular distribution for assembled gap junction protein was confirmed by freeze fracture analysis, which revealed large particle aggregates, characteristic of gap junction plaques, on the fracture faces of all these membranes. The presence of gap junction particle aggregates in the ER suggests that the oligomerization of connexin can occur at its site of synthesis. Further, the process of assembly into double membrane junction structures in intracellular membranes may be driven by connexin protein concentration.


Sign in / Sign up

Export Citation Format

Share Document