Intercellular communication between epithelial and fiber cells of the eye lens

1994 ◽  
Vol 107 (4) ◽  
pp. 799-811 ◽  
Author(s):  
S. Bassnett ◽  
J.R. Kuszak ◽  
L. Reinisch ◽  
H.G. Brown ◽  
D.C. Beebe

Results of electrical, dye-coupling and morphological studies have previously suggested that gap junctions mediate communication between the anterior epithelium of the lens and the underlying lens fiber cells. This connection is believed to permit ‘metabolic cooperation’ between these dissimilar cell types and may be of particular importance to the fiber cells, which are thought incapable of autonomous ionic homeostasis. We reinvestigated the nature of the connection between epithelial and fiber cells of the embryonic chicken lens using fluorescence confocal microscopy and freeze-fracture analysis. In contrast to earlier studies, our data provided no support for gap-junction-mediated transport from the lens epithelium to the fibers. Fluorescent dyes loaded biochemically into the lens epithelium were retained there for more than one hour. There was a decrease in epithelial fluorescence over this period, but this was not accompanied by an increase in fiber cell fluorescence. Diffusional modeling suggested that these data were inconsistent with the presence of extensive epithelium-fiber cell coupling, even if the observed decrease in epithelial fluorescence was attributed exclusively to the diffusion of dye into the fiber mass via gap junctions. Furthermore, the rate of loss of fluorescence from isolated epithelia was indistinguishable from that measured in whole lenses, suggesting that decreased epithelial fluorescence resulted from photobleaching and leakage of dye rather than diffusion, via gap junctions, into the fibers. Analysis of freeze-fracture replicas of plasma membranes at the epithelial-fiber cell interface failed to reveal evidence of gap-junction plaques, although evidence of endocytosis was abundant. These studies were done under conditions where the location of the fracture plane was unambiguous and where gap junctions could be observed in the lateral membranes of neighboring epithelial and fiber cells. Paradoxically, tracer molecules injected into the fiber mass were able to pass into the epithelium via a pathway that was not blocked by incubation at 4 degrees C or by treatment with octanol and which excluded large (approximately 10 kDa) molecular mass tracers. Together with previous measurements of electrical coupling between fiber cells and epithelial cells, these data indicate the presence of a low-resistance pathway connecting these cell types that is not mediated by classical gap junctions.

Author(s):  
J. David Robertson ◽  
M.J. Costello ◽  
T.J. McIntosh

The lens of the eye consists of closely adherent greatly elongated flattened narrow fiber cells that are electrically coupled by gap junctions. In thin sections the 100-150 Å intermembrane space usually seen in tissues between adjacent cells is greatly reduced between adjacent fiber cells. Freeze-fracture-etch (FFE) studies have demonstrated gap junctions between fiber cells. Several workers have observed expanses of square crystallinity in fiber cell membranes with a lattice constant of 6-7 nm. This has usually been attributed variously to artifact induced by calcium, pH or proteolytic enzymatic digestion. Square arrays have been seen in isolated fractions of fiber cell membranes prepared with detergents as minor components and dismissed as relatively insignificant and either related or unrelated to gap junctions. Some have regarded them as a form of gap junction.


1993 ◽  
Vol 106 (1) ◽  
pp. 227-235 ◽  
Author(s):  
W.K. Lo ◽  
T.S. Reese

Gap junctions in the epithelium and superficial fiber cells from young mice were examined in lenses prepared by rapid-freezing, and processed for freeze-substitution and freeze-fracture electron microscopy. There appeared to be three structural types of gap junction: one type between epithelial cells and two types between fiber cells. Epithelial gap junctions seen by freeze-substitution were approximately 20 nm thick and consistently associated with layers of dense material lying along both cytoplasmic surfaces. Fiber gap junctions, in contrast, were 15–16 nm (type 1) or 17–18 nm thick (type 2), and had little associated cytoplasmic material. Type 1 fiber gap junctions were extensive in flat expanses of cell membrane and had a thin, discontinuous central lamina, whereas type 2 fiber gap junctions were associated with the ball-and-socket domains and exhibited a dense, continuous central lamina. Both types of fiber gap junction had a diffuse arrangement of junctional intramembrane particles, whereas particles and pits of epithelial gap junctions were in a tight, hexagonal configuration. The type 2 fiber gap junctions, however, had a larger particle size (approximately 9 nm) than the type 1 (approximately 7.5 nm). In addition, a large number of junctional particles typified the E-faces of both fiber types but not the epithelial type of gap junction. Gap junctions between fiber and epithelial cells had structural features of type 1 fiber gap junctions.(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
Camillo Peracchia ◽  
Stephen J. Girsch

The fiber cells of eye lens communicate directly with each other by exchanging ions, dyes and metabolites. In most tissues this type of communication (cell coupling) is mediated by gap junctions. In the lens, the fiber cells are extensively interconnected by junctions. However, lens junctions, although morphologically similar to gap junctions, differ from them in a number of structural, biochemical and immunological features. Like gap junctions, lens junctions are regions of close cell-to-cell apposition. Unlike gap junctions, however, the extracellular gap is apparently absent in lens junctions, such that their thickness is approximately 2 nm smaller than that of typical gap junctions (Fig. 1,c). In freeze-fracture replicas, the particles of control lens junctions are more loosely packed than those of typical gap junctions (Fig. 1,a) and crystallize, when exposed to uncoupling agents such as Ca++, or H+, into pseudo-hexagonal, rhombic (Fig. 1,b) and orthogonal arrays with a particle-to-particle spacing of 6.5 nm. Because of these differences, questions have been raised about the interpretation of the lens junctions as communicating junctions, in spite of the fact that they are the only junctions interlinking lens fiber cells.


1976 ◽  
Vol 22 (2) ◽  
pp. 427-434
Author(s):  
F. Mazet ◽  
J. Cartaud

The freeze-fracturing technique was used to characterize the junctional devices involved in the electrical coupling of frog atrial fibres. These fibres are connected by a type of junction which can be interpreted as a morphological variant of the “gap junction” or “nexus”. The most characteristic features are rows of 9-nm junctional particles forming single or anastomosed circular profiles on the inner membrane face, and corresponding pits on the outer membrane face. Very seldom aggregates consisting of few geometrically disposed 9-nm particles are found. The significance of the junctional structures in the atrial fibres is discussed, with respect to present knowledge about junctional features of gap junctions in various tissues, including embryonic ones.


1985 ◽  
Vol 101 (5) ◽  
pp. 1741-1748 ◽  
Author(s):  
T M Miller ◽  
D A Goodenough

Gap junctions are known to present a variety of different morphologies in electron micrographs and x-ray diffraction patterns. This variation in structure is not only seen between gap junctions in different tissues and organisms, but also within a given tissue. In an attempt to understand the physiological meaning of some aspects of this variability, gap junction structure was studied following experimental manipulation of junctional channel conductance. Both physiological and morphological experiments were performed on gap junctions joining stage 20-23 chick embryo lens epithelial cells. Channel conductance was experimentally altered by using five different experimental manipulations, and assayed for conductance changes by observing the intercellular diffusion of Lucifer Yellow CH. All structural measurements were made on electron micrographs of freeze-fracture replicas after quick-freezing of specimens from the living state; for comparison, aldehyde-fixed specimens were measured as well. Analysis of the data generated as a result of this study revealed no common statistically significant changes in the intrajunctional packing of connexons in the membrane plane as a result of experimental alteration of junctional channel conductance, although some of the experimental manipulations used to alter junctional conductance did produce significant structural changes. Aldehyde fixation caused a dramatic condensation of connexon packing, a result not observed with any of the five experimental uncoupling conditions over the 40-min time course of the experiments.


1995 ◽  
Vol 268 (4) ◽  
pp. C968-C977 ◽  
Author(s):  
R. Lal ◽  
S. A. John ◽  
D. W. Laird ◽  
M. F. Arnsdorf

Current structural models of gap junctions indicate two apposed plasma membranes with hexagonally packed hemichannels in each membrane aligning end to end. These channels connect the cytoplasms of contacting cells. Images of isolated rat heart gap junctions have been made with the atomic force microscope in aqueous media. We show that native cardiac gap junctions have a thickness of 25 +/- 0.6 nm. This decreases to 17 nm when they are treated with trypsin, which is known to remove some cytoplasmic components of connexin 43. Imaging shows subunits with a center to center spacing of approximately 9-10 nm and long range hexagonal packing, measurements in agreement with studies using freeze-fracture and negative-stain electron microscopy. In addition to gap junctions, we imaged structures that had all the characteristics of native gap junctions except their thickness was limited to 9-11 nm. They also show long range hexagonal packing and center to center spacing of 9-10 nm. These structures decrease in thickness, to 6-9 nm, when treated with trypsin. We have called these structures hemiplaques. They appear to be present endogenously in the preparation, as we have ruled out their being an artifact of imaging by AFM. However, it remains to be determined if they are a consequence of the procedure used in isolating gap junctions or a possible intermediary in gap junction formation.


1986 ◽  
Vol 102 (1) ◽  
pp. 194-199 ◽  
Author(s):  
T M Miller ◽  
D A Goodenough

Lens epithelial cells communicate with two different cell types. They communicate with other epithelial cells via gap junctions on their lateral membranes, and with fiber cells via junctions on their apices. We tested independently these two routes of cell-cell communication to determine if treatment with a 90% CO2-equilibrated medium caused a decrease in junctional permeability; the transfer of fluorescent dye was used as the assay. We found that the high-CO2 treatment blocked intraepithelial dye transfer but not fiber-to-epithelium dye transfer. The lens epithelial cell thus forms at least two physiologically distinct classes of gap junctions.


2007 ◽  
Vol 292 (3) ◽  
pp. G734-G745 ◽  
Author(s):  
E. E. Daniel ◽  
Ahmed El Yazbi ◽  
Marco Mannarino ◽  
Gary Galante ◽  
Geoffrey Boddy ◽  
...  

Varicosities of nitrergic and other nerves end on deep muscular plexus interstitial cells of Cajal or on CD34-positive, c- kit-negative fibroblast-like cells. Both cell types connect to outer circular muscle by gap junctions, which may transmit nerve messages to muscle. We tested the hypotheses that gap junctions transmit pacing messages from interstitial cells of Cajal of the myenteric plexus. Effects of inhibitors of gap junction conductance were studied on paced contractions and nerve transmissions in small segments of circular muscle of mouse intestine. Using electrical field stimulation parameters (50 V/cm, 5 pps, and 0.5 ms) which evoke near maximal responses to nitrergic, cholinergic, and apamin-sensitive nerve stimulation, we isolated inhibitory responses to nitrergic nerves, inhibitory responses to apamin-sensitive nerves and excitatory responses to cholinergic nerves. 18β-Glycyrrhetinic acid (10, 30, and 100 μM), octanol (0.1, 0.3, and 1 mM) and gap peptides (300 μM of40Gap27,43Gap26,37,43Gap27) all failed to abolish neurotransmission. 18β-Glycyrrhetinic acid inhibited frequencies of paced contractions, likely owing to inhibition of l-type Ca2+channels in smooth muscle, but octanol or gap peptides did not. 18β-Glycyrrhetinic acid and octanol, but not gap peptides, reduced the amplitudes of spontaneous and nerve-induced contractions. These reductions paralleled reductions in contractions to exogenous carbachol. Additional experiments with gap peptides in both longitudinal and circular muscle segments after NG-nitro-l-arginine and TTX revealed no effects on pacing frequencies. We conclude that gap junction coupling may not be necessary for pacing or nerve transmission to the circular muscle of the mouse intestine.


1979 ◽  
Vol 80 (1) ◽  
pp. 150-165 ◽  
Author(s):  
M L Ledbetter ◽  
M Lubin

Mammalian cells of different species differ in sensitivity to ouabain. This sensitivity is expressed as reduced intracellular K+ content, reduced rates of protein synthesis, and cessation of cell multiplication. Using 86Rb+ as a measure of intracellular K+, we found higher levels of radioactivity in mixtures of ouabain-sensitive and -resistant cells cultured in the presence of ouabain than predicted from pure cultures of the two component cell types. The simplest explanation is that K+ and 86Rb+ are being transferred from ouabain-resistant to ouabain-sensitive cells, enhancing the total intracellular 86Rb+ in the culture. A function, "index of cooperation," expresses this enhancement as a number ranging from 0 to 1, and permits comparisons to be made under various culture conditions and using various cell types. An index of cooperation greater than 0 requires cell contact, since no enhancement occurs when contact between two cell types in the same culture is prevented. The index of cooperation for a number of different cell combinations agrees with other measures of cell-cell interaction associated with gap junctions, such as electrical coupling and metabolic cooperation. Coculture of ouabain-sensitive and ouabain-resistant cells in the presence of ouabain also leads to restoration of the capacity for protein synthesis. Autoradiography shows that this restoration occurs in the sensitive cell type and is dependent upon contact with ouabain-resistant cells. Furthermore, sensitive cells are able to multiply in the presence of ouabain when cocultured with resistant cells. Thus K+, presumably transferred to sensitive cells through gap junctions, is able to counteract the toxic effects of ouabain on intracellular K+ levels and protein synthesis, and to restore growth.


2001 ◽  
Vol 357 (2) ◽  
pp. 489-495 ◽  
Author(s):  
Leonard SHORE ◽  
Pauline McLEAN ◽  
Susan K. GILMOUR ◽  
Malcolm B. HODGINS ◽  
Malcolm E. FINBOW

The control of cell–cell communication through gap junctions is thought to be crucial in normal tissue function and during various stages of tumorigenesis. However, few natural regulators of gap junctions have been found. We show here that increasing the activity of ornithine decarboxylase, or adding polyamines to the outside of cells, increases the level of gap junction communication between various epithelial cells. Conversely, reduction of ornithine decarboxylase activity decreases the level of gap junction communication. This regulation is dependent upon the expression of connexin 43 (Cx43 or Cxα1), which is a major connexin expressed in many different cell types, and involves an increase in Cx43 and its cellular re-distribution.


Sign in / Sign up

Export Citation Format

Share Document