scholarly journals Membrane potential of Plasmodium-infected erythrocytes.

1982 ◽  
Vol 93 (3) ◽  
pp. 685-689 ◽  
Author(s):  
R B Mikkelsen ◽  
K Tanabe ◽  
D F Wallach

The membrane potential (Em) of normal and Plasmodium chabaudi-infected rat erythrocytes was determined from the transmembrane distributions of the lipophilic anion, thiocyanate (SCN), and cation, triphenylmethylphosphonium (TPMP). The SCN- and TPMP-measured Em of normal erythrocytes are -6.5 +/- 3 mV and -10 +/- 4 mV, respectively. The TPMP-measured Em of infected cells depended on parasite developmental stage; "late" stages (schizonts and gametocytes) were characterized by a Em = -35 mV "early stages (ring and copurifying noninfected) by a low Em (-16 mV). The SCN-determined Em of infected cells was -7 mV regardless of parasite stage. Studies with different metabolic inhibitors including antimycin A, a proton ionophore (carbonylcyanide m-chlorophenylhydrazone [CCCP] ), and a H+ -ATPase inhibitor (N,N'-dicyclohexylcarbodiimide, [DCCD] ) indicate that SCN monitors the Em across the erythrocyte membrane of infected and normal cells whereas TPMP accumulation reflects the Em across the plasma membranes of both erythrocyte and parasite. These inhibitor studies also implicated proton fluxes in Em-generation of parasitized cells. Experiments with weak acids and bases to measure intracellular pH further support this proposal. Methylamine distribution and direct pH measurement after saponin lysis of erythrocyte membranes demonstrated an acidic pH for the erythrocyte matrix of infected cells. The transmembrane distributions of weak acids (acetate and 5,5-dimethyloxazolidine-2,4-dione) indicated a DCCD-sensitive alkaline compartment. The combined results suggest that the intraerythrocyte parasite Em and delta pH are in part the consequence of an electrogenic proton pump localized to the parasite plasma membrane.

1993 ◽  
Vol 265 (4) ◽  
pp. C901-C917 ◽  
Author(s):  
R. W. Van Dyke

Both lysosomes and endosomes are acidified by an electrogenic proton pump, although studies in intact cells indicate that the steady-state internal pH (pHi) of lysosomes is more acid than that of endosomes. We undertook the present study to examine in detail the acidification mechanism of purified rat liver secondary lysosomes and to compare it with that of a population of early endosomes. Both endosomes and lysosomes exhibited ATP-dependent acidification, but proton influx rates were 2.4- to 2.7-fold greater for endosomes than for lysosomes because of differences in both buffering capacity and acidification rates, suggesting that endosomes exhibited greater numbers or rates of proton pumps. Lysosomes, however, exhibited a more acidic steady-state pHi due in part to a slower proton leak rate. Changes in medium Cl- increased acidification rates of endosomes more than lysosomes, and the lysosome ATP-dependent interior-positive membrane potential was only partially eliminated by high-Cl- medium. Permeability studies suggested that lysosomes were less permeable to Na+, Li+, and Cl- and more permeable to K+ and PO4(2-) than endosomes. Na-K-adenosine-triphosphatase did not appear to regulate acidification of either vesicle type. Endosome and lysosome acidification displayed similar inhibition profiles to N-ethylmaleimide, dicyclohexyl-carbodiimide, and vanadate, although lysosomes were somewhat more sensitive [concentration producing 50% maximal inhibition (IC50) 1 nM] to bafilomycin A1 than endosomes (IC50 7.6 nM). Oligomycin (1.5-3 microM) stimulated lysosome acidification due to shunting of membrane potential. Overall, acidification of endosomes and lysosomes was qualitatively similar but quantitatively somewhat different, possibly related to differences in the density or rate of proton pumps as well as vesicle permeability to protons, anions, and other cations.


Blood ◽  
1981 ◽  
Vol 57 (2) ◽  
pp. 305-312 ◽  
Author(s):  
HR Prasanna ◽  
HH Edwards ◽  
DR Phillips

Abstract This study described the binding of platelet plasma membranes to either control or thrombin-activated platelets. Glycoproteins in plasma membranes isolated from human platelets were labeled by oxidation with periodate followed by reduction with [3H]NaBH4. Labeled membranes were incubated with either control or thrombin-activated platelets. The amount of membranes bound was measured by separating platelets with bound membranes from solution by rapid centrifugation through 27% sucrose and determining the amount of radioactivity associated with platelets. Five- to sevenfold more membranes bound to thrombin- activated platelets than to control platelets. This enhanced binding of labeled membranes was completely inhibited by an excess of unlabeled platelet membranes. Human erythrocyte membranes had little affinity for either washed or thrombin-activated platelets and therefore did not compete for platelet-membrane binding. Binding of platelet membranes to thrombin-treated platelets was inhibited by prior incubation of the platelets with PGI2 suggesting that the enhanced binding of membranes was to activated platelets. This study demonstrates that the purified platelet membranes have functional sites that can mediate membrane binding to platelets and that quantitation of membrane binding appears to reflect the increased aggregation capability of activated platelets.


1996 ◽  
Vol 109 (10) ◽  
pp. 2453-2460 ◽  
Author(s):  
K. Fujimoto ◽  
M. Umeda ◽  
T. Fujimoto

We propose the use of membrane splitting by freeze-fracture for differential phospholipid analysis of protoplasmic and exoplasmic membrane leaflets (halves). Unfixed cells or tissues are quick-frozen, freeze-fractured, and platinum-carbon (Pt/C) shadowed. The Pt/C replicas are then treated with 2.5% sodium dodecyl sulfate (SDS) to solubilize unfractured membranes and to release cytoplasm or contents. While the detergent dissolves unfractured membranes, it would not extract lipids from split membranes, as their apolar domains are stabilized by their Pt/C replicas. After washing, the Pt/C replicas, along with attached protoplasmic and exoplasmic membrane halves, are processed for immunocytochemical labeling of phospholipids with antibody, followed by electron microscopic observation. Here, we present the application of the SDS-digested freeze-fracture replica labeling (SDS-FRL) technique to the transmembrane distribution of a major membrane phospholipid, phosphatidylcholine (PC), in various cell and intracellular membranes. Immunogold labeling revealed that PC is exclusively localized on the exoplasmic membrane halves of the plasma membranes, and the intracellular membranes of various organelles, e.g. nuclei, mitochondria, endoplasmic reticulum, secretory granules, and disc membranes of photoreceptor cells. One exception to this general scheme was the plasma membrane forming the myelin sheath of neurons and the Ca(2+)-treated erythrocyte membranes. In these cell membranes, roughly equal amounts of immunogold particles for PC were seen on each outer and inner membrane half, implying a symmetrical transmembrane distribution of PC. Initial screening suggests that the SDS-FRL technique allows in situ analysis of the transmembrane distribution of membrane lipids, and at the same time opens up the possibility of labeling membranes such as intracellular membranes not normally accessible to cytochemical labels without the distortion potentially associated with membrane isolation procedures.


2000 ◽  
Vol 279 (5) ◽  
pp. G875-G885 ◽  
Author(s):  
Thomas Y. Ma ◽  
Neil T. Hoa ◽  
Daniel D. Tran ◽  
Vuong Bui ◽  
Ali Pedram ◽  
...  

The intracellular mechanisms that mediate cytochalasin-induced increase in intestinal epithelial tight junction (TJ) permeability are unclear. In this study, we examined the involvement of myosin light chain kinase (MLCK) in this process, using the filter-grown Caco-2 intestinal epithelial monolayers. Cytochalasin B (Cyto B) (5 μg/ml) produced an increase in Caco-2 MLCK activity, which correlated with the increase in Caco-2 TJ permeability. The inhibition of Cyto B-induced MLCK activation prevented the increase in Caco-2 TJ permeability. Additionally, myosin-Mg2+-ATPase inhibitor and metabolic inhibitors (which inhibit MLCK induced actin-myosin contraction) also prevented the Cyto B-induced increase in Caco-2 TJ permeability. Cyto B caused a late-phase (15–30 min) aggregation of actin fragments into large actin clumps, which was also inhibited by MLCK inhibitors. Cyto B produced a morphological disturbance of the ZO-1 TJ proteins, visually correlating with the functional increase in Caco-2 TJ permeability. The MLCK and myosin-Mg2+-ATPase inhibitors prevented both the functional increase in TJ permeability and disruption of ZO-1 proteins. These findings suggested that Cyto B-induced increase in Caco-2 TJ permeability is regulated by MLCK activation.


1984 ◽  
Vol 70 (1) ◽  
pp. 73-81
Author(s):  
K. Tanabe ◽  
K. Murakami

The membrane potential of Toxoplasma gondii, an obligatory intracellular protozoan parasite, was monitored with the cationic permeant fluorescent dye rhodamine 123 (R123). Fluorescence microscopy revealed R123 to be partitioned predominantly in a restricted part of the parasite, which consisted of twisted or branched tubules, or of granular bodies. These structures were frequently connected to each other. The dye retention by these structures was markedly reduced by treating R123-labelled parasites with the proton ionophore, carbonylcyanide m-chlorophenylhydrazone, the potassium ionophore, valinomycin and the inhibitor of electron transport, antimycin A. Thus, these structures are regarded as the parasite mitochondria. Another cationic fluorescent dye, rhodamine 6G, stained the parasite mitochondria, whereas a negatively charged fluorescent dye, fluorescein, and the neutral compounds, rhodamine 110 and rhodamine B, did not. This fact indicates that R123 monitored the parasite mitochondrial membrane potential. T. gondii-infected 3T3 cells were also stained with R123. In contrast to the mitochondria of extracellular parasites, those of intracellular parasites failed to take up the dye. The absence of fluorescence in intracellular parasites persisted until the infected host cells ruptured and liberated daughter parasites 1 day after infection. Parasites, liberated from the host cells, either spontaneously or artificially by passing the infected cells through a 27G needle, regained the ability to take up the dye. After direct microinjection of R123 into the vacuole in which the parasite grows and multiples, the dye appeared in the host-cell mitochondria but not in the parasite's mitochondria. Thus, we conclude that the mitochondrial membrane potential of T. gondii was reduced after invasion of host cells by the parasite.


1976 ◽  
Vol 156 (1) ◽  
pp. 159-165 ◽  
Author(s):  
C Hallam ◽  
J M Wrigglesworth

1. H+ titration was used to detect the presence of ionizable groups on human erythrocyte plasma membranes. Between pH2.9 and 11.3, two significant peaks of H+ association/dissociation occur in the differential from of the titration curve, one at pH3. 1. And the other at pH10.3. 2. After disruption of membrane structure by exposure to high pH or by the addition of sodium dodecyl sulphate, maxima of H+ association/dissociation were seen at pH3.1,4.3,6.5,10.3 and 10.7. 3. Spectrophotometric assay and selective chemical treatments were used to identify several of the titratable residues. 4. The degree of eleectrostatic interaction between titratable charged groups was investigated by comparing the titration characteristics of the membranes before and after modification of membrane structure.


2004 ◽  
Vol 78 (10) ◽  
pp. 5279-5287 ◽  
Author(s):  
Herman W. Favoreel ◽  
Thomas C. Mettenleiter ◽  
Hans J. Nauwynck

ABSTRACT Pseudorabies virus (PRV) is a swine alphaherpesvirus that is closely related to human herpes simplex virus (HSV). Both PRV and HSV express a variety of viral envelope glycoproteins in the plasma membranes of infected cells. Here we show that at least four major PRV glycoproteins (gB, gC, gD, and gE) in the plasma membrane of infected swine kidney cells and monocytes seem to be linked, since monospecific antibody-induced patching of any one of these proteins results in copatching of the others. Further, for all four PRV glycoproteins, monospecific antibody-induced patches were enriched in GM1, a typical marker of lipid raft microdomains, but were excluded for transferrin receptor, a nonraft marker, suggesting that these viral proteins may associate with lipid rafts. However, only gB and, to a lesser extent, gE were found in lipid raft fractions by using detergent floatation assays, indicating that gC and gD do not show strong lipid raft association. Addition of methyl-β-cyclodextrin (MCD), a cholesterol-depleting agent that is commonly used to disrupt lipid rafts, only slightly reduced copatching efficiency between the different viral proteins, indicating that other factors, perhaps tegument-glycoprotein interactions, may be important for the observed copatching events. On the other hand, MCD strongly reduced polarization of the antibody-induced viral glycoprotein patches to a cap structure, a gE-dependent process that has been described for specific PRV- and HSV-infected cells. Therefore, we hypothesize that efficient gE-mediated capping of antibody-antigen patches may require the lipid raft-associated signal transduction machinery.


1989 ◽  
Vol 94 (4) ◽  
pp. 733-741
Author(s):  
B.J. Cottrell ◽  
C. Pye ◽  
A.M. Glauert ◽  
A.E. Butterworth

Human monocytes were purified from peripheral blood and cultured in vitro on hydrophobic membranes. Such cells developed into mature tissue-type macrophages after approximately 1 week in culture. During this maturation period the macrophages developed a potent cytotoxic mechanism whereby they could kill the schistosomula of Schistosoma mansoni in standard in vitro cytotoxicity assays. Cytological and ultrastructural studies of the cells grown in vitro indicated that macrophages developed many of the classical histological and ultrastructural features of ‘activated’ cells with ruffled plasma membranes and significant increases in rough endoplasmic reticulum and Golgi vesicles. Effective cytotoxicity depended upon contact of the effector cells and their parasite target. Further, experiments using metabolic inhibitors indicated that cytotoxicity was dependent upon protein synthesis. Initial results point to the macrophage factor being distinct from some of the better-characterised macrophage secretory products such as tumour necrosis factor, proteases and products of oxygen metabolism.


Sign in / Sign up

Export Citation Format

Share Document