scholarly journals Evidence for actin involvement in cardiac Z-lines and Z-line analogues.

1983 ◽  
Vol 96 (2) ◽  
pp. 435-442 ◽  
Author(s):  
M Yamaguchi ◽  
R M Robson ◽  
M H Stromer

Canine and feline cardiac Z-lines and Z-rods were examined by electron microscopy before and after digestion of muscle fibers with Ca2+-activated protease (CAF). Removal by CAF of electron-dense material which covers Z-lines and Z-rods exposed interdigitating longitudinal filaments (6-7 nm in diameter) apparently continuous with thin filaments of the respective I-bands. The newly exposed longitudinal filaments of CAF-treated Z-lines and of CAF-treated Z-rods bound heavy meromyosin and therefore are actin. The width of Z-lines and length of Z-rods are determined by the amount of overlap of actin filaments of opposite polarity. The oblique filaments in Z-lines and Z-rods are responsible for the perpendicular periodicity of Z-lines and Z-rods, and are attributed to alpha-actinin.

Biochemistry ◽  
1980 ◽  
Vol 19 (21) ◽  
pp. 4913-4921 ◽  
Author(s):  
Julian Borejdo ◽  
Olga Assulin

1985 ◽  
Vol 79 (1) ◽  
pp. 161-179 ◽  
Author(s):  
S.L. Tamm ◽  
S. Tamm

Macrocilia from the lips of the ctenophore Beroe consist of multiple rows of ciliary axonemes surrounded by a common membrane, with a giant capping structure at the tip. The cap is formed by extensions of the A and central-pair microtubules, which are bound together by electron-dense material into a pointed projection about 1.5 micron long. The tip undergoes visible changes in configuration during the beat cycle of macrocilia. In the rest position at the end of the effective stroke (+30 degrees total bend angle), there is no displacement between the tips of the axonemes, and the capping structure points straight into the stomach cavity. In the sigmoid arrest position at the end of the recovery stroke (−60 degrees total bend angle), the tip of the macrocilium is hook-shaped and points toward the stomach in the direction of the subsequent effective stroke. This change in tip configuration is caused by sliding displacement of microtubules that are bound together at their distal ends. Electron microscopy and two-dimensional models show that the singlet microtubule cap acts as if it were hinged to the ends of the axonemes and tilted to absorb the microtubule displacement that occurs during the recovery stroke. The straight and hooked shapes of the tip are thought to help the ctenophore ingest prey.


1980 ◽  
Vol 86 (2) ◽  
pp. 568-575 ◽  
Author(s):  
J M Sanger ◽  
J W Sanger

Heavy meromyosin (HMM) decoration of actin filaments was used to detect the polarity of microfilaments in interphase and cleaving rat kangaroo (PtK2) cells. Ethanol at -20 degrees C was used to make the cells permeable to HMM followed by tannic acid-glutaraldehyde fixation for electron microscopy. Uniform polarity of actin filaments was observed at cell junctions and central attachment plaques with the HMM arrowheads always pointing away from the junction or plaque. Stress fibers were banded in appearance with their component microfilaments exhibiting both parallel and antiparallel orientation with respect to one another. Identical banding of microfilament bundles was also seen in cleavage furrows with the same variation in filament polarity as found in stress fibers. Similarly banded fibers were not seen outside the cleavage furrow in mitotic cells. By the time that a mid-body was present, the actin filaments in the cleavage furrow were no longer in banded fibers. The alternating dark and light bands of both the stress fibers and cleavage furrow fibers are approximately equal in length, each measuring approximately 0.16 micrometer. Actin filaments were present in both bands, and individual decorated filaments could sometimes be traced through four band lengths. Undecorated filaments, 10 nm in diameter, could often be seen within the light bands. A model is proposed to explain the arrangement of filaments in stress fibers and cleavage furrows based on the striations observed with tannic acid and the polarity of the actin filaments.


2010 ◽  
Vol 55 (1) ◽  
Author(s):  
Lenka Šípková ◽  
Céline Levron ◽  
Mark Freeman ◽  
Tomáš Scholz

AbstractSpermiogenesis and spermatozoon ultrastructure of the tapeworm Parabothriocephalus gracilis were described using transmission electron microscopy (TEM). Spermiogenesis is characterized by the formation of a zone of differentiation with two centrioles associated with striated rootlets, and an intercentriolar body between them. The two flagella undergo a rotation of 90° until they become parallel to the median cytoplasmic extension with which they fuse. Electron-dense material is present in the apical region of the zone of differentiation in the early stages of spermiogenesis. This electron-dense material is characteristic for the orders Bothriocephalidea and Diphyllobothriidea. The mature spermatozoon contains two axonemes of the 9 + ‘1’ trepaxonematan pattern, nucleus, parallel cortical microtubules and electron-dense granules of glycogen. The anterior extremity of the spermatozoon exhibits a single helical electron-dense crested body 130 nm thick. One of the most interesting features is the presence of a ring of cortical microtubules surrounding the axoneme. This character has been reported only for species of the order Bothriocephalidea and may be unique in this cestode group.


1969 ◽  
Vol 43 (2) ◽  
pp. 312-328 ◽  
Author(s):  
Harunori Ishikawa ◽  
Richard Bischoff ◽  
Howard Holtzer

Heavy meromyosin (HMM) forms characteristic arrowhead complexes with actin filaments in situ. These complexes are readily visualized in sectioned muscle. Following HMM treatment similar complexes appear in sectioned fibroblasts, chondrogenic cells, nerve cells, and several types of epithelial cells. Thin filaments freshly isolated from chondrogenic cells also bind HMM and form arrowhead structures in negatively stained preparations. HMM-filament complexes are prominent in the cortex of a variety of normal metaphase and Colcemid-arrested metaphase cells. There is no detectable binding of HMM with other cellular components such as microtubules, 100-A filaments, tonofilaments, membranes, nuclei, or collagen fibrils. The significance of HMM-filament binding is discussed in view of the finding that arrowhead complexes form in types of cells not usually thought to contain actin filaments.


Author(s):  
M. Hagopian ◽  
D. Spiro ◽  
P. Yau

Glycerinated chick pectoral muscle was prepared for electron microscopy. Sarcomere lengths varied from 2.3 to 1.1μ reflecting various degrees of shortening. Over a sarcomere range of 2.3 to 1.3μ the thin actin filaments which measure 1.0μ and the thick myosin filaments which measure 1.5μ are constant in length (Fig. 1). At sarcomere lengths below 2μ the thin filaments penetrate through the center of the A band into the opposite halves of the sarcomere producing A contraction bands as previously described. In sarcomeres which measure 1.5 to 1.3μ additional contraction bands are noted adjacent to the Z lines. In longitudinal sections the array of filaments in the Z contraction band appears orderly (Fig. 2). It is our impression that these Z contraction bands result from penetration of the tapered lateral ends of the myosin filaments through the Z lines into the adjacent sarcomere rather than a crumpling of thick filaments as has been previously stated. Below 1.3μ in length the sarcomeres are disorganized, and it is not possible to define filament lengths.


1967 ◽  
Vol 35 (2) ◽  
pp. 303-321 ◽  
Author(s):  
Bernard J. Panner ◽  
Carl R. Honig

Using a variety of preparative techniques for electron microscopy, we have obtained evidence for the disposition of actin and myosin in vertebrate smooth muscle. All longitudinal myofilaments seen in sections appear to be actin. Previous reports of two types of longitudinal filaments in sections are accounted for by technical factors, and by differentiated areas of opacity along individual filaments. Dense bodies with actin emerging from both ends have been identified in homogenates, and resemble Z discs from skeletal muscle (Huxley, 1963). In sections, short, dark-staining lateral filaments 15–25 A in diameter link adjacent actin filaments within dense bodies and in membrane dense pataches. They appear homologous with Z-disc filaments. Similar lateral filaments connect actin to plasma membrane. Dense bodies and dense patches, therefore, are attachment points and denote units analogous to sarcomeres. In glycerinated, methacrylate-embedded sections, lateral processes different in length and staining characteristics from lateral filaments in dense bodies exist at intervals along actin filaments. These processes are about 30 A wide and resemble heavy meromyosin from skeletal muscle. They also resemble heads of whole molecules of myosin in negatively stained material from gizzard homogenates. Intact single myosin molecules and dimers have been found, both free and attached to actin, even in media of very low ionic strength. Myosin can, therefore, exist in relatively disaggregated form. Models of the contraction mechanism of smooth muscle are proposed. The unique features are: (1) Myosin exists as small functional units. (2) Movement occurs by interdigitation and sliding of actin filaments.


1976 ◽  
Vol 50 (4) ◽  
pp. 251-257 ◽  
Author(s):  
Rosemary Rogers ◽  
D. S. Ellis ◽  
D. A. Denham

ABSTRACTThe intrauterine development ofBrugia pahangiembryos was followed from after fertilization to birth, using light and electron microscopy. The origin and development of the sheath of the microfilaria and its Possible role in the nutrition of the developing embryo were particularly investigated. Comparisons were drawn with the intrauterine development of other filarial species. The egg shell of theB. pahangiembryo js distinct from the oolemma and forms the sheath of the microfilaria. It is suggested that the electron dense material released by cells of the uterine wall and passing along the channels between the egg shells of adjacent embryos is nutritive. The death of large numbers of developing embryos in the central uterine Jumen is probably caused by overcrowding as their size rapidly increases, leading to nutritional deficiency.


1988 ◽  
Vol 25 (2) ◽  
pp. 131-137 ◽  
Author(s):  
E. Momotani ◽  
D. L. Whipple ◽  
A. B. Thiermann ◽  
N. F. Cheville

Ligated ileal loops of calves were inoculated with live and heat-killed Mycobacterium paratuberculosis and were examined by light and electron microscopy. At 5 hours after inoculation, acid-fast bacilli were in subepithelial macrophages, but not in M cells covering domes. At 20 hours, more than 50 acid-fast bacilli per cross section were in subepithelial macrophages in domes. Both living and heat-killed bacilli passed into domes. Addition of anti- M. paratuberculosis bovine scrum to the inoculum enhanced entry of bacteria into domes. By electron microscopy, intact bacilli with electron-transparent zones (peribacillary spaces) were in the supranuclear cytoplasm of M cells at 20 hours. M cells also contained vacuoles, including electron-dense material interpreted as degraded bacilli. Subepithelial and intraepithelial macrophages contained bacilli and degraded bacterial material in phagosomes. These results suggest that calf ileal M cells take up bacilli, and that subepithelial and intraepithelial macrophages secondarily accept bacilli or bacterial debris which are expelled from M cells.


Author(s):  
Arya K. Bal ◽  
Gilles H. Cousineau

Cyto-chemical staining techniques at the light microscope level have revealed the presence of mucopolysaccharides and proteins in the cortical granules of Eichinoderm eggs. In routine electron microscopy preparation the cortical granules appear to have two morphologically distinct components - an electron dense inner component (dark bodies) surrounded by a less-electron dense material. In the present investigation it has been made possible to stain the dense inner material selectively with Phosphotungstic acid (PTA) in non-osmicated aldehyde fixed oocytes and eggs of Arbacia punctulata.


Sign in / Sign up

Export Citation Format

Share Document