scholarly journals The Small GTPases Rho and Rac Are Required for the Establishment of Cadherin-dependent Cell–Cell Contacts

1997 ◽  
Vol 137 (6) ◽  
pp. 1421-1431 ◽  
Author(s):  
Vania M.M. Braga ◽  
Laura M. Machesky ◽  
Alan Hall ◽  
Neil A. Hotchin

Cadherins are calcium-dependent cell–cell adhesion molecules that require the interaction of the cytoplasmic tail with the actin cytoskeleton for adhesive activity. Because of the functional relationship between cadherin receptors and actin filament organization, we investigated whether members of the Rho family of small GTPases are necessary for cadherin adhesion. In fibroblasts, the Rho family members Rho and Rac regulate actin polymerization to produce stress fibers and lamellipodia, respectively. In epithelial cells, we demonstrate that Rho and Rac are required for the establishment of cadherin-mediated cell–cell adhesion and the actin reorganization necessary to stabilize the receptors at sites of intercellular junctions. Blocking endogenous Rho or Rac selectively removed cadherin complexes from junctions induced for up to 3 h, while desmosomes were not perturbed. In addition, withdrawal of cadherins from intercellular junctions temporally precedes the removal of CD44 and integrins, other microfilament-associated receptors. Our data showed that the concerted action of Rho and Rac modulate the establishment of cadherin adhesion: a constitutively active form of Rac was not sufficient to stabilize cadherindependent cell–cell contacts when endogenous Rho was inhibited. Upon induction of calcium-dependent intercellular adhesion, there was a rapid accumulation of actin at sites of cell–cell contacts, which was prevented by blocking cadherin function, Rho or Rac activity. However, if cadherin complexes are clustered by specific antibodies attached to beads, actin recruitment to the receptors was perturbed by inhibiting Rac but not Rho. Our results provide new insights into the role of the small GTPases in the cadherin-dependent cell– cell contact formation and the remodelling of actin filaments in epithelial cells.

1994 ◽  
Vol 124 (5) ◽  
pp. 729-741 ◽  
Author(s):  
L Hinck ◽  
WJ Nelson ◽  
J Papkoff

Wnt-1 homologs have been identified in invertebrates and vertebrates and play important roles in cellular differentiation and organization. In Drosophila, the products of the segment polarity genes wingless (the Wnt-1 homolog) and armadillo participate in a signal transduction pathway important for cellular boundary formation in embryonic development, but functional interactions between the proteins are unknown. We have examined Wnt-1 function in mammalian cells in which armadillo (beta-catenin and plakoglobin) is known to bind to and regulate cadherin cell adhesion proteins. We show that Wnt-1 expression results in the accumulation of beta-catenin and plakoglobin. In addition, binding of beta-catenin to the cell adhesion protein, cadherin, is stabilized, resulting in a concomitant increase in the strength of calcium-dependent cell-cell adhesion. Thus, a consequence of the functional interaction between Wnt-1 and armadillo family members is the strengthening of cell-cell adhesion, which may lead to the specification of cellular boundaries.


1983 ◽  
Vol 97 (3) ◽  
pp. 944-948 ◽  
Author(s):  
S I Ogou ◽  
C Yoshida-Noro ◽  
M Takeichi

The molecules involved in Ca2+-dependent cell-cell adhesion systems (CDS) in mouse hepatocytes were characterized and compared with those in teratocarcinoma cells. Fab fragments of antibody raised against liver tissues (anti-liver) inhibited Ca2+-dependent aggregation of both liver and teratocarcinoma cells. A monoclonal antibody raised against teratocarcinoma CDS (ECCD-1) also inhibited the Ca2+-dependent aggregation of these two cell types equally. These antibodies induced disruption of cell-cell adhesion in monolayers of hepatocytes. Thus, CDS in these two cell types are not immunologically distinctive. Immunochemical analyses with these antibodies showed that CDS in both hepatocytes and teratocarcinoma cells involved at least two classes of cell surface proteins with molecular weights of 124,000 and 104,000. ECCD-1 selectively bound to hepatocytes but not to fibroblastic cells in liver cell cultures. Thus, the molecular constitution of CDS in hepatocytes and teratocarcinoma stem cells is identical. As ECCD-1 reacts with other classes of embryonic and fetal cells, the molecules identified here could have a major role in cell-cell adhesion in various tissues at any developmental stage of animals.


1999 ◽  
Vol 112 (13) ◽  
pp. 2069-2080 ◽  
Author(s):  
J. Mounier ◽  
V. Laurent ◽  
A. Hall ◽  
P. Fort ◽  
M.F. Carlier ◽  
...  

Shigella flexneri, an invasive bacterial pathogen, promotes formation of two cytoskeletal structures: the entry focus that mediates bacterial uptake into epithelial cells and the actin-comet tail that enables the bacteria to spread intracellularly. During the entry step, secretion of bacterial invasins causes a massive burst of subcortical actin polymerization leading the formation of localised membrane projections. Fusion of these membrane ruffles leads to bacterial internalization. Inside the cytoplasm, polar expression of the IcsA protein on the bacterial surface allows polymerization of actin filaments and their organization into an actin-comet tail leading to bacterial spread. The Rho family of small GTPases plays an essential role in the organization and regulation of cellular cytoskeletal structures (i.e. filopodia, lamellipodia, adherence plaques and intercellular junctions). We show here that induction of Shigella entry foci is controlled by the Cdc42, Rac and Rho GTPases, but not by RhoG. In contrast, actin-driven intracellular motility of Shigella does not require Rho GTPases. Therefore, Shigella appears to manipulate the epithelial cell cytoskeleton both by Rho GTPase-dependent and -independent processes.


2019 ◽  
Vol 20 (14) ◽  
pp. 3404 ◽  
Author(s):  
Andrea Dalle Vedove ◽  
Federico Falchi ◽  
Stefano Donini ◽  
Aurelie Dobric ◽  
Sebastien Germain ◽  
...  

Cadherins are a large family of transmembrane calcium-dependent cell adhesion proteins that orchestrate adherens junction formation and are crucially involved in tissue morphogenesis. Due to their important role in cancer development and metastasis, cadherins can be considered attractive targets for drug discovery. A recent crystal structure of the complex of a cadherin extracellular portion and a small molecule inhibitor allowed the identification of a druggable interface, thus providing a viable strategy for the design of cadherin dimerization modulators. Here, we report on a structure-based virtual screening approach that led to the identification of efficient and selective modulators of E-cadherin-mediated cell–cell adhesion. Of all the putative inhibitors that were identified and experimentally tested by cell adhesion assays using human pancreatic tumor BxPC-3 cells expressing both E-cadherin and P-cadherin, two compounds turned out to be effective in inhibiting stable cell–cell adhesion at micromolar concentrations. Moreover, at the same concentrations, one of them also showed anti-invasive properties in cell invasion assays. These results will allow further development of novel and selective cadherin-mediated cell–cell adhesion modulators for the treatment of a variety of cadherin-expressing solid tumors and for improving the efficiency of drug delivery across biological barriers.


1997 ◽  
Vol 110 (8) ◽  
pp. 1013-1022 ◽  
Author(s):  
J.E. Nieset ◽  
A.R. Redfield ◽  
F. Jin ◽  
K.A. Knudsen ◽  
K.R. Johnson ◽  
...  

Cadherins are calcium-dependent, cell surface glycoproteins involved in cell-cell adhesion. To function in cell-cell adhesion, the transmembrane cadherin molecule must be associated with the cytoskeleton via cytoplasmic proteins known as catenins. Three catenins, alpha-catenin, beta-catenin and gamma-catenin (also known as plakoglobin), have been identified. beta-catenin or plakoglobin is associated directly with the cadherin; alpha-catenin binds to beta-catenin/plakoglobin and serves to link the cadherin/catenin complex to the actin cytoskeleton. The domains on the cadherin and betacatenin/plakoglobin that are responsible for protein-protein interactions have been mapped. However, little is known about the molecular interactions between alpha-catenin and beta-catenin/plakoglobin or about the interactions between alpha-catenin and the cytoskeleton. In this study we have used the yeast two-hybrid system to map the domains on alpha-catenin that allow it to associate with beta-catenin/plakoglobin and with alpha-actinin. We also identify a region on alpha-actinin that is responsible for its interaction with alpha-catenin. The yeast two-hybrid data were confirmed with biochemical studies.


1994 ◽  
Vol 267 (4) ◽  
pp. F612-F623
Author(s):  
E. E. Simon ◽  
C. H. Liu ◽  
M. Das ◽  
S. Nigam ◽  
T. J. Broekelmann ◽  
...  

We have characterized the integrins present on cultured tubule epithelial cells from human renal cortexes, enriched for proximal cells, using fluorescence microscopy, immunoprecipitation, and cell adhesion assays. By immunofluorescence, the alpha 3-integrin subunit stained most intensely and was present on all cells predominantly at cell-cell contacts. The alpha 6-subunit was present on all cells in a pattern consistent with extracellular matrix contacts. The alpha 5-subunit was present on most cells in a cell-matrix contact pattern; alpha V-subunit was weakly positive and occasionally seen in cell-matrix contacts. The alpha 2-subunit was present on clusters of distal tubule cells, predominantly at cell-cell contacts. Immunoprecipitation revealed the predominant integrin to be alpha 3 beta 1 with some alpha 2 beta 1, presumably contributed by distal cells. The alpha 5 beta 1-, alpha 6 beta 1-, alpha 6 beta 4-, and alpha V beta 3-integrins, as well as trace amounts of alpha 1 beta 1-integrins, were also present. The alpha 4 beta 1-integrin was not detected. Initial attachment to fibronectin was mediated by alpha V beta 3- and alpha 5 beta 1-integrins; initial attachment to laminin was mediated by the alpha 6 beta 1- and alpha 3 beta 1- integrins and, in some preparations, by an unidentified integrin; and initial attachment to collagen type IV was mediated by alpha V beta 3-integrin and an unidentified beta 1-integrin. After extensively immunodepleting membrane extracts with anti-alpha 1, -alpha 2, -alpha 3, -alpha 4, -alpha 5, -alpha 6, and -alpha V antibodies, an anti-beta 1 antibody still precipitated an integrin. Its electrophoretic mobility differs from the laminin-binding alpha 7 beta 1-integrin. Thus we have identified many of the integrins on cortical tubule cells and their role in mediating initial attachment to extracellular matrix. However, the cell adhesion assays and immunoprecipitations suggest the presence of an unidentified beta 1-integrin that may mediate renal tubule cell attachment to laminin and collagen.


2010 ◽  
Vol 21 (4) ◽  
pp. 584-596 ◽  
Author(s):  
Kazuomi Noda ◽  
Jianghui Zhang ◽  
Shigetomo Fukuhara ◽  
Satoshi Kunimoto ◽  
Michihiro Yoshimura ◽  
...  

Vascular endothelial (VE)-cadherin is a cell–cell adhesion molecule involved in endothelial barrier functions. Previously, we reported that cAMP-Epac-Rap1 signal enhances VE-cadherin–dependent cell adhesion. Here, we further scrutinized how cAMP-Epac-Rap1 pathway promotes stabilization of VE-cadherin at the cell–cell contacts. Forskolin induced circumferential actin bundling and accumulation of VE-cadherin fused with green fluorescence protein (VEC-GFP) on the bundled actin filaments. Fluorescence recovery after photobleaching (FRAP) analyses using VEC-GFP revealed that forskolin stabilizes VE-cadherin at cell–cell contacts. These effects of forskolin were mimicked by an activator for Epac but not by that for protein kinase A. Forskolin-induced both accumulation and stabilization of junctional VEC-GFP was impeded by latrunculin A. VE-cadherin, α-catenin, and β-catenin were dispensable for forskolin-induced circumferential actin bundling, indicating that homophilic VE-cadherin association is not the trigger of actin bundling. Requirement of α- and β-catenins for forskolin-induced stabilization of VE-cadherin on the actin bundles was confirmed by FRAP analyses using VEC-GFP mutants, supporting the classical model that α-catenin could potentially link the bundled actin to cadherin. Collectively, circumferential actin bundle formation and subsequent linkage between actin bundles and VE-cadherin through α- and β-catenins are important for the stabilization of VE-cadherin at the cell–cell contacts in cAMP-Epac-Rap1 signal-activated cells.


2004 ◽  
Vol 166 (3) ◽  
pp. 393-405 ◽  
Author(s):  
Tatsuro Fukuhara ◽  
Kazuya Shimizu ◽  
Tomomi Kawakatsu ◽  
Taihei Fukuyama ◽  
Yukiko Minami ◽  
...  

Nectins, Ca2+-independent immunoglobulin-like cell–cell adhesion molecules, initiate cell–cell adhesion by their trans interactions and recruit cadherins to cooperatively form adherens junctions (AJs). In addition, the trans interactions of nectins induce the activation of Cdc42 and Rac small G proteins, which increases the velocity of the formation of AJs. We examined here how nectins induce the activation of Cdc42 in MDCK epithelial cells and L fibroblasts. Nectins recruited and activated c-Src at the nectin-based cell–cell adhesion sites. FRG, a GDP/GTP exchange factor specific for Cdc42, was then recruited there, tyrosine phosphorylated by c-Src, and activated, causing an increase in the GTP-bound active form of Cdc42. Inhibition of the nectin-induced activation of c-Src suppressed the nectin-induced activation of FRG and Cdc42. Inhibition of the nectin-induced activation of FRG or depletion of FRG by RNA interference suppressed the nectin-induced activation of Cdc42. These results indicate that nectins induce the activation of Cdc42 through c-Src and FRG locally at the nectin-based cell–cell adhesion sites.


Sign in / Sign up

Export Citation Format

Share Document