The role of cadherins and catenins in gliomagenesis

2006 ◽  
Vol 21 (4) ◽  
pp. 1-4 ◽  
Author(s):  
Kaveh Barami ◽  
Laura Lewis-Tuffin ◽  
Panos Z. Anastasiadis

✓Cell–cell adhesion is a crucial process occurring during normal tissue development. Cadherins are calcium-dependent cell-surface adhesion molecules involved in cell–cell adhesion. They reorganize the actin cytoskeleton via interaction with the catenins. Modulation of the cadherin/catenin system plays a role in cell motility. Dysregulation of the cadherin/catenin assembly has been implicated in various cancers. In this review, the authors summarize all studies focusing on the role of cadherins and catenins in glioma formation. With the emergence of recent data regarding gliomas' putative cell of origin, elucidation of the role of cadherins/catenins in gliomagenesis will become important in devising new therapeutic approaches against such deadly cancers.

1994 ◽  
Vol 124 (5) ◽  
pp. 729-741 ◽  
Author(s):  
L Hinck ◽  
WJ Nelson ◽  
J Papkoff

Wnt-1 homologs have been identified in invertebrates and vertebrates and play important roles in cellular differentiation and organization. In Drosophila, the products of the segment polarity genes wingless (the Wnt-1 homolog) and armadillo participate in a signal transduction pathway important for cellular boundary formation in embryonic development, but functional interactions between the proteins are unknown. We have examined Wnt-1 function in mammalian cells in which armadillo (beta-catenin and plakoglobin) is known to bind to and regulate cadherin cell adhesion proteins. We show that Wnt-1 expression results in the accumulation of beta-catenin and plakoglobin. In addition, binding of beta-catenin to the cell adhesion protein, cadherin, is stabilized, resulting in a concomitant increase in the strength of calcium-dependent cell-cell adhesion. Thus, a consequence of the functional interaction between Wnt-1 and armadillo family members is the strengthening of cell-cell adhesion, which may lead to the specification of cellular boundaries.


1983 ◽  
Vol 97 (3) ◽  
pp. 944-948 ◽  
Author(s):  
S I Ogou ◽  
C Yoshida-Noro ◽  
M Takeichi

The molecules involved in Ca2+-dependent cell-cell adhesion systems (CDS) in mouse hepatocytes were characterized and compared with those in teratocarcinoma cells. Fab fragments of antibody raised against liver tissues (anti-liver) inhibited Ca2+-dependent aggregation of both liver and teratocarcinoma cells. A monoclonal antibody raised against teratocarcinoma CDS (ECCD-1) also inhibited the Ca2+-dependent aggregation of these two cell types equally. These antibodies induced disruption of cell-cell adhesion in monolayers of hepatocytes. Thus, CDS in these two cell types are not immunologically distinctive. Immunochemical analyses with these antibodies showed that CDS in both hepatocytes and teratocarcinoma cells involved at least two classes of cell surface proteins with molecular weights of 124,000 and 104,000. ECCD-1 selectively bound to hepatocytes but not to fibroblastic cells in liver cell cultures. Thus, the molecular constitution of CDS in hepatocytes and teratocarcinoma stem cells is identical. As ECCD-1 reacts with other classes of embryonic and fetal cells, the molecules identified here could have a major role in cell-cell adhesion in various tissues at any developmental stage of animals.


2019 ◽  
Vol 20 (14) ◽  
pp. 3404 ◽  
Author(s):  
Andrea Dalle Vedove ◽  
Federico Falchi ◽  
Stefano Donini ◽  
Aurelie Dobric ◽  
Sebastien Germain ◽  
...  

Cadherins are a large family of transmembrane calcium-dependent cell adhesion proteins that orchestrate adherens junction formation and are crucially involved in tissue morphogenesis. Due to their important role in cancer development and metastasis, cadherins can be considered attractive targets for drug discovery. A recent crystal structure of the complex of a cadherin extracellular portion and a small molecule inhibitor allowed the identification of a druggable interface, thus providing a viable strategy for the design of cadherin dimerization modulators. Here, we report on a structure-based virtual screening approach that led to the identification of efficient and selective modulators of E-cadherin-mediated cell–cell adhesion. Of all the putative inhibitors that were identified and experimentally tested by cell adhesion assays using human pancreatic tumor BxPC-3 cells expressing both E-cadherin and P-cadherin, two compounds turned out to be effective in inhibiting stable cell–cell adhesion at micromolar concentrations. Moreover, at the same concentrations, one of them also showed anti-invasive properties in cell invasion assays. These results will allow further development of novel and selective cadherin-mediated cell–cell adhesion modulators for the treatment of a variety of cadherin-expressing solid tumors and for improving the efficiency of drug delivery across biological barriers.


1997 ◽  
Vol 110 (8) ◽  
pp. 1013-1022 ◽  
Author(s):  
J.E. Nieset ◽  
A.R. Redfield ◽  
F. Jin ◽  
K.A. Knudsen ◽  
K.R. Johnson ◽  
...  

Cadherins are calcium-dependent, cell surface glycoproteins involved in cell-cell adhesion. To function in cell-cell adhesion, the transmembrane cadherin molecule must be associated with the cytoskeleton via cytoplasmic proteins known as catenins. Three catenins, alpha-catenin, beta-catenin and gamma-catenin (also known as plakoglobin), have been identified. beta-catenin or plakoglobin is associated directly with the cadherin; alpha-catenin binds to beta-catenin/plakoglobin and serves to link the cadherin/catenin complex to the actin cytoskeleton. The domains on the cadherin and betacatenin/plakoglobin that are responsible for protein-protein interactions have been mapped. However, little is known about the molecular interactions between alpha-catenin and beta-catenin/plakoglobin or about the interactions between alpha-catenin and the cytoskeleton. In this study we have used the yeast two-hybrid system to map the domains on alpha-catenin that allow it to associate with beta-catenin/plakoglobin and with alpha-actinin. We also identify a region on alpha-actinin that is responsible for its interaction with alpha-catenin. The yeast two-hybrid data were confirmed with biochemical studies.


1992 ◽  
Vol 118 (3) ◽  
pp. 671-679 ◽  
Author(s):  
K A Knudsen ◽  
M J Wheelock

E- and N-cadherin are members of a family of calcium-dependent, cell surface glycoproteins involved in cell-cell adhesion. Extracellularly, the transmembrane cadherins self-associate, while, intracellularly, they interact with the actin-based cytoskeleton. Several intracellular proteins, collectively termed catenins, have been noted to co-immunoprecipitate with E- and N-cadherin and are thought to be involved in linking the cadherins to the cytoskeleton. Two catenins have been identified recently: a 102-kD vinculin-like protein (alpha-catenin) and a 92-kD Drosophila armadillo/plakoglobin-like protein (beta-catenin). Here, we show that plakoglobin, or an 83-kD plakoglobin-like protein, co-immunoprecipitates and colocalizes with both E- and N-cadherin. The 83-kD protein is immunologically distinct from the 92-kD beta-catenin and, because of its molecular mass, likely represents the cadherin-associated protein called gamma-catenin. Thus, two different members of a plakoglobin family associate with N- and E-cadherin and, together with the 102-kD alpha-catenin, appear to participate in linking the cadherins to the actin-based cytoskeleton.


1997 ◽  
Vol 137 (6) ◽  
pp. 1421-1431 ◽  
Author(s):  
Vania M.M. Braga ◽  
Laura M. Machesky ◽  
Alan Hall ◽  
Neil A. Hotchin

Cadherins are calcium-dependent cell–cell adhesion molecules that require the interaction of the cytoplasmic tail with the actin cytoskeleton for adhesive activity. Because of the functional relationship between cadherin receptors and actin filament organization, we investigated whether members of the Rho family of small GTPases are necessary for cadherin adhesion. In fibroblasts, the Rho family members Rho and Rac regulate actin polymerization to produce stress fibers and lamellipodia, respectively. In epithelial cells, we demonstrate that Rho and Rac are required for the establishment of cadherin-mediated cell–cell adhesion and the actin reorganization necessary to stabilize the receptors at sites of intercellular junctions. Blocking endogenous Rho or Rac selectively removed cadherin complexes from junctions induced for up to 3 h, while desmosomes were not perturbed. In addition, withdrawal of cadherins from intercellular junctions temporally precedes the removal of CD44 and integrins, other microfilament-associated receptors. Our data showed that the concerted action of Rho and Rac modulate the establishment of cadherin adhesion: a constitutively active form of Rac was not sufficient to stabilize cadherindependent cell–cell contacts when endogenous Rho was inhibited. Upon induction of calcium-dependent intercellular adhesion, there was a rapid accumulation of actin at sites of cell–cell contacts, which was prevented by blocking cadherin function, Rho or Rac activity. However, if cadherin complexes are clustered by specific antibodies attached to beads, actin recruitment to the receptors was perturbed by inhibiting Rac but not Rho. Our results provide new insights into the role of the small GTPases in the cadherin-dependent cell– cell contact formation and the remodelling of actin filaments in epithelial cells.


Development ◽  
1988 ◽  
Vol 102 (4) ◽  
pp. 639-655 ◽  
Author(s):  
M. Takeichi

Cadherins are a family of glycoproteins involved in the Ca2+-dependent cell-cell adhesion mechanism which is detected in most kinds of tissues. Inhibition of the cadherin activity with antibodies induces dissociation of cell layers, indicating a fundamental importance of these molecules in maintaining the multicellular structure. Cadherins are divided into subclasses, including E-, N- and P-cadherins. While all subclasses are similar in molecular weight, Ca2+- and protease-sensitivity, each subclass is characterized by a unique tissue distribution pattern and immunological specificity. Analysis of amino acid sequences deduced from cDNA encoding these molecules showed that they are integral membrane proteins of 723–748 amino acids long and share common sequences; similarity in the sequences between subclasses is in a range of 50–60% when compared within a single animal species. L cells, with very little endogenous cadherin activity, transfected with the cadherin cDNA acquired high cadherin-mediated aggregating activity. Their colony morphology was altered by the ectopic expression of cadherins from the dispersed type to the compact type, providing direct evidence for a key role of cadherins in cell-cell adhesion. It has been suggested that cadherins bind cells by their homophilic interactions at the extracellular domain and are associated with actin bundles at the cytoplasmic domain. It appears that each cadherin subclass has binding specificity and this molecular family is involved in selective cell-cell adhesion. In development, the expression of each cadherin subclass is spatiotemporally regulated and associated with a variety of morphogenetic events; e.g. the termination or initiation of expression of a cadherin subclass in a given cell collective is correlated with its segregation from or connection with other cell collectives. Antibodies to cadherins were shown to perturb the morphogenesis of some embryonic organs in vitro. These observations suggest that cadherins play a crucial role in construction of tissues and the whole animal body.


2012 ◽  
Vol 197 (6) ◽  
pp. 819-836 ◽  
Author(s):  
Fangliang Zhang ◽  
Sougata Saha ◽  
Anna Kashina

Talin is a large scaffolding molecule that plays a major role in integrin-dependent cell–matrix adhesion. A role for talin in cell–cell attachment through cadherin has never been demonstrated, however. Here, we identify a novel calpain-dependent proteolytic cleavage of talin that results in the release of a 70-kD C-terminal fragment, which serves as a substrate of posttranslational arginylation. The intracellular levels of this fragment closely correlated with the formation of cell–cell adhesions, and this fragment localized to cadherin-containing cell–cell contacts. Moreover, reintroduction of this fragment rescued the cell–cell adhesion defects in arginyltransferase (Ate1) knockout cells, which normally have a very low level of this fragment. Arginylation of this fragment further enhanced its ability to rescue cell–cell adhesion formation. In addition, arginylation facilitated its turnover, suggesting a dual role of arginylation in its intracellular regulation. Thus, our work identifies a novel proteolytic product of talin that is regulated by arginylation and a new role of talin in cadherin-dependent cell–cell adhesion.


Sign in / Sign up

Export Citation Format

Share Document