scholarly journals THE FORMATION AND PROPERTIES OF POLIOVIRUS-NEUTRALIZING ANTIBODY

1964 ◽  
Vol 119 (1) ◽  
pp. 21-39 ◽  
Author(s):  
Sven-Eric Svehag ◽  
Benjamin Mandel

Transient 19S antibody formation was induced in rabbits by single or repeated stimuli with a small dose of poliovirus. Available evidence indicated that cessation of 19S synthesis was due to lack of continuous antigenic stimulation and not to loss of cells participating in antibody formation. "Immunological memory" in 19S antibody formation was demonstrable only within 2 to 3 days following discontinuation of synthesis but not thereafter. Following stimulation with a high dose of polio-virus both 19S and 7S antibodies were formed. The kinetics of their formation differed in several respects: (a) 19S antibody preceded 7S antibody by ⩾1½ days; (b) 19S antibody rose to peak titers at a rapid exponential rate within 1 week, while 7S antibody increased at a slow decelerating rate for ⩽3 weeks; (c) 19S antibody formation was short-lasting while 7S antibody synthesis endured. A renewed formation of both antibodies occurred following restimulation with a high antigen dose. The secondary 19S and 7S antibody responses were similar to the respective primary responses, and the preexistence of 7S antibody synthesis did not detectably alter the secondary 19S response. Both 19S and 7S antibodies were formed and the kinetics of their formation was similar (a) for infectious and non-infectious (UV-) poliovirus antigen; (b) for the serologically unrelated poliovirus and Coxsackie B-4 virus; (c) when poliovirus was administered by different routes; (d) when 1-day-old or adult rabbits were immunized; (e) in antibody responses to poliovirus in rabbit, guinea pig, and man. Whole body x-irradiation 20 hours prior to antigenic stimulus (high dose) resulted in delayed but markedly prolonged 19S antibody formation and inhibition of 7S antibody synthesis. Thus, the formation of 19S and 7S antibody differed in (a) antigen dose requirements for induction and maintained synthesis; (b) kinetics; (c) retention of memory; and (d) sensitivity to prior x-irradiation. These differences are best explained on the assumption that the two antibodies are produced by different cells.

1964 ◽  
Vol 119 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Sven-Eric Svehag ◽  
Benjamin Mandel

Rapid formation of poliovirus-neutralizing antibody was observed in the rabbit. 19S type antibody was detectable 8 to 12 hours following a single intravenous virus injection and the induction period was of the order of 4 to 5 hours or less. The production of 7S antibody had a longer lag phase (1½ to 2 days) and it was formed at slower rate. The observed rate of early 19S and 7S antibody formation as well as the peak titers of the two antibodies were antigen dose dependent. Normal rabbit sera showed low neutralizing activity to several viral antigens in a sensitive assay system. Following intravenous inoculation of poliovirus either transitory (⩽ 1 month) or enduring (¾ to 1½ year) antibody formation resulted depending upon the dose of antigen employed. In transitory responses, which could be induced by a single small antigen dose, only 19S antibody was demonstrable and there was an abrupt cessation of antibody synthesis on day 4 or 5. In enduring responses, both 19S and 7S antibody were formed and the minimum antigen dose required for initiation of such a response was equal to the dose needed for induction of 7S antibody formation. Thus, enduring antibody formation was an all-or-none phenomenon depending upon whether or not 7S antibody formation was induced. The antigen dose requirement for induction of 7S antibody was much higher (by 50-fold or more) than that for 19S antibody. This allowed a determination of antigen dose regions, within which predictably transitory (19S) or enduring (19S + 7S) antibody formation was obtained. These pronounced differences in antigen dose requirement for induction and kinetics of formation of 19S and 7S antibody suggest that the same cells do not participate in the formation of the two antibodies.


1977 ◽  
Vol 146 (1) ◽  
pp. 302-307 ◽  
Author(s):  
N Chiorazzi ◽  
A S Tung ◽  
D H Katz

Mice of the inbred strains, C57BL/6 and C57BL/10 (H-2b), are genetically incapable of developing IgE antibody responses to ragweed pollen extract (RE) or its dinitrophenylated derivative, DNP-RE. This nonresponsiveness has previously been thought to reflect the absence of a relevant H-2-linked Ir genes controlling responses of inbred mice to these antigens. However, pretreatment of H-2b mice with either low doses of ionizing X irradiation or cyclophosphamide abrogates the nonresponder status of such animals, apparently by removal of a suppressive mechanism normally inhibiting development of IgE responses to these antigens. The implications of these findings for mechanisms of genetic control of IgE antibody synthesis and the Ir-gene concept are discussed.


1957 ◽  
Vol 105 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Frank J. Dixon ◽  
William O. Weigle

Lymph node cells capable of either primary or secondary antibody responses following transfer to adult normal or x-radiated homologous recipients make no response following transfer to neonatal homologous recipients. On the basis of the present observations it seems that the environment provided by the neonatal recipient is unsuitable for the immunologic activities of transferred cells in the early phases of the immune response. Neonatal recipients can, however, adequately support cells transferred during the process of active antibody formation. These findings suggest that the immunologic inadequacy of the neonatal animal is related to its internal environment and not necessarily to the lack of cells capable of antibody synthesis.


1968 ◽  
Vol 35 (2) ◽  
pp. 451 ◽  
Author(s):  
Scott L. Reynolds ◽  
Charles P. Craig ◽  
Howard W. Whitford ◽  
Jim Airhart ◽  
Edward V. Staab

2020 ◽  
Vol 26 (11) ◽  
pp. 1694-1700 ◽  
Author(s):  
Lisa H. Tostanoski ◽  
Frank Wegmann ◽  
Amanda J. Martinot ◽  
Carolin Loos ◽  
Katherine McMahan ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19) in humans is often a clinically mild illness, but some individuals develop severe pneumonia, respiratory failure and death1–4. Studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hamsters5–7 and nonhuman primates8–10 have generally reported mild clinical disease, and preclinical SARS-CoV-2 vaccine studies have demonstrated reduction of viral replication in the upper and lower respiratory tracts in nonhuman primates11–13. Here we show that high-dose intranasal SARS-CoV-2 infection in hamsters results in severe clinical disease, including high levels of virus replication in tissues, extensive pneumonia, weight loss and mortality in a subset of animals. A single immunization with an adenovirus serotype 26 vector-based vaccine expressing a stabilized SARS-CoV-2 spike protein elicited binding and neutralizing antibody responses and protected against SARS-CoV-2-induced weight loss, pneumonia and mortality. These data demonstrate vaccine protection against SARS-CoV-2 clinical disease. This model should prove useful for preclinical studies of SARS-CoV-2 vaccines, therapeutics and pathogenesis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Inga Szurgot ◽  
Karl Ljungberg ◽  
Beate M. Kümmerer ◽  
Peter Liljeström

AbstractWe describe a novel vaccine platform that can generate protective immunity to chikungunya virus (CHIKV) in C57BL/6J mice after a single immunization by employing an infectious RNA (iRNA), which upon introduction into a host cell launches an infectious attenuated virus. We and others have previously reported that an engineered deletion of 183 nucleotides in the nsP3 gene attenuates chikungunya virus (CHIKV) and reduces in vivo viral replication and viremia after challenge in mice, macaques and man. Here, we demonstrated that in vitro transfection of iRNA carrying the nsP3 deletion generated infectious viruses, and after intramuscular injection, the iRNA induced robust antibody responses in mice. The iRNA was superior at eliciting binding and neutralizing antibody responses as compared to a DNA vaccine encoding the same RNA (iDNA) or a non-propagating RNA replicon (RREP) lacking the capsid encoding gene. Subsequent challenge with a high dose of CHIKV demonstrated that the antibody responses induced by this vaccine candidate protected animals from viremia. The iRNA approach constitutes a novel vaccine platform with the potential to impact the spread of CHIKV. Moreover, we believe that this approach is likely applicable also to other positive-strand viruses.


2019 ◽  
Vol 71 (6) ◽  
pp. 1447-1453 ◽  
Author(s):  
Sigrid Gouma ◽  
Seth J Zost ◽  
Kaela Parkhouse ◽  
Angela Branche ◽  
David J Topham ◽  
...  

Abstract Background The H3N2 component of egg-based 2017–2018 influenza vaccines possessed an adaptive substitution that alters antigenicity. Several influenza vaccines include antigens that are produced through alternative systems, but a systematic comparison of different vaccines used during the 2017–2018 season has not been completed. Methods We compared antibody responses in humans vaccinated with Fluzone (egg-based, n = 23), Fluzone High-Dose (egg-based, n = 16), Flublok (recombinant protein–based, n = 23), or Flucelvax (cell-based, n = 23) during the 2017–2018 season. We completed neutralization assays using an egg-adapted H3N2 virus, a cell-based H3N2 virus, wild-type 3c2.A and 3c2.A2 H3N2 viruses, and the H1N1 vaccine strain. We also performed enzyme-linked immunosorbent assays using a recombinant wild-type 3c2.A hemagglutinin. Antibody responses were compared in adjusted analysis. Results Postvaccination neutralizing antibody titers to 3c2.A and 3c2.A2 were higher in Flublok recipients compared with Flucelvax or Fluzone recipients (P < .01). Postvaccination titers to 3c2.A and 3c2.A2 were similar in Flublok and Fluzone High-Dose recipients, though seroconversion rates trended higher in Flublok recipients. Postvaccination titers in Flucelvax recipients were low to all H3N2 viruses tested, including the cell-based H3N2 strain. Postvaccination neutralizing antibody titers to H1N1 were similar among the different vaccine groups. Conclusions These data suggest that influenza vaccine antigen match and dose are both important for eliciting optimal H3N2 antibody responses in humans. Future studies should be designed to determine if our findings directly impact vaccine effectiveness. Clinical Trials Registration NCT03068949.


Author(s):  
Marco Mandolesi ◽  
Daniel J Sheward ◽  
Leo Hanke ◽  
Junjie Ma ◽  
Pradeepa Pushparaj ◽  
...  

The outbreak and spread of SARS-CoV-2 (Severe Acute Respiratory Syndrome coronavirus 2), the cause of coronavirus disease 2019 (COVID-19), is a current global health emergency and a prophylactic vaccine is needed urgently. The spike glycoprotein of SARS-CoV-2 mediates entry into host cells, and thus is a target for neutralizing antibodies and vaccine design. Here we show that adjuvanted protein immunization with SARS-CoV-2 spike trimers, stabilized in prefusion conformation, results in potent antibody responses in mice and rhesus macaques with neutralizing antibody titers orders of magnitude greater than those typically measured in serum from SARS-CoV-2 seropositive humans. Neutralizing antibody responses were observed after a single dose, with exceptionally high titers achieved after boosting. Furthermore, neutralizing antibody titers elicited by a dose-sparing regimen in mice were similar to those obtained from a high dose regimen. Taken together, these data strongly support the development of adjuvanted SARS-CoV-2 prefusion-stabilized spike protein subunit vaccines.


Sign in / Sign up

Export Citation Format

Share Document