scholarly journals THE IN VITRO DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES

1966 ◽  
Vol 123 (4) ◽  
pp. 747-756 ◽  
Author(s):  
Zanvil A. Cohn ◽  
James G. Hirsch ◽  
Martha E. Fedorko

The structure of unstimulated mouse peritoneal phagocytes has been examined by electron microscopy and compared to cells obtained from the inflamed peritoneum and from cultures maintained in vitro. The unstimulated cell resembles the blood monocyte and contains a moderate amount of rough surfaced endoplasmic reticulum, a small but well defined Golgi apparatus and a few, small, electron-opaque granules in the cytoplasm. During in vitro cultivation there are marked changes in cell ultrastructure. Most prominent is the formation of large electron-opaque granules, some of which have a complex matrix containing both electron-opaque and lucent vesicles. In addition, there is an increase in size of the Golgi apparatus with the appearance of new lamellae and tiny, smooth surfaced vesicles. With continued cultivation, large lipid droplets are found in apposition to the rough endoplasmic reticulum. The formation and size of electron-opaque granules as well as the enlargement of the Golgi region is stimulated by high concentrations of serum in the medium. Cells obtained from the peritoneal cavity of lipopolysaccharide stimulated animals demonstrated changes in ultrastructure similar to those seen in cells cultured in vitro.

1979 ◽  
Vol 149 (1) ◽  
pp. 17-26 ◽  
Author(s):  
JWM Van Der Meer ◽  
RHJ Beelen ◽  
DM Fluitsma ◽  
R Van Furth

Monoblasts, promonocytes, and macrophages in in vitro cultures of murine bone marrow were studied ultrastructurally, with special attention to peroxidatic activity. Monoblasts show peroxidatic activity in the rough endoplasmic reticulum and nuclear envelope as well as in the granules. The presence of peroxidatic activity in the Golgi apparatus could not be determined. Promonocytes have peroxidase-positive rough endoplasmic reticulum, Golgi apparatus, nuclear envelope, and granules, as previously reported. During culture, cells are formed with peroxidatic activity similar to that of monocytes or exudate macrophages (positive granules; negative Golgi apparatus, RER, and nuclear envelope); we call these cells early macrophages. In addition, transitional macrophages with both positive granules and positive RER, nuclear envelope, negative Golgi apparatus (as in exudate- resident macrophages in vivo), and mature macrophages with peroxidatic activity only in the RER and nuclear envelope (as in resident macrophages in vivo) were found. A considerable number of cells without detectable peroxidatic activity were also encountered. Our finding that macrophages with the peroxidatic pattern of monocytes (early macrophages), exudate-resident macrophages (transitional macrophages), and resident macrophages (mature macrophages), develop in vitro from proliferating precursor cells deriving from the bone marrow, demonstrates once again that resident macrophages in tissues originate from precursor cells in the bone marrow. Therefore, this conclusion can no longer be challenged on the basis of a cytochemical difference between monocytes and exudate macrophages on the one hand and resident macrophages on the other.


1969 ◽  
Vol 43 (2) ◽  
pp. 289-311 ◽  
Author(s):  
P. Whur ◽  
Annette Herscovics ◽  
C. P. Leblond

Rat thyroid lobes incubated with mannose-3H, galactose-3H, or leucine-3H, were studied by radioautography. With leucine-3H and mannose-3H, the grain reaction observed in the light microscope is distributed diffusely over the cells at 5 min, with no reaction over the colloid. Later, the grains are concentrated towards the apex, and colloid reactions begin to appear by 2 hr. With galactose-3H, the reaction at 5 min is again restricted to the cells but it consists of clumped grains next to the nucleus. Soon after, grains are concentrated at the cell apex and colloid reactions appear in some follicles as early as 30 min. Puromycin almost totally inhibits incorporation of leucine-3H and mannose-3H, but has no detectable effect on galactose-3H incorporation during the 1st hr. Quantitation of electron microscope radioautographs shows that mannose-3H label localizes initially in the rough endoplasmic reticulum, and by 1–2 hr much of this reaction is transferred to the Golgi apparatus. At 3 hr and subsequently, significant reactions are present over apical vesicles and colloid, while the Golgi reaction declines. Label associated with galactose-3H localizes initially in the Golgi apparatus and rapidly transfers to the apical vesicles, and then to the colloid. These findings indicate that mannose incorporation into thyroglobulin precursors occurs within the rough endoplasmic reticulum; these precursors then migrate to the Golgi apparatus, where galactose incorporation takes place. The glycoprotein thus formed migrates via the apical vesicles to the colloid.


2003 ◽  
Vol 70 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Annalucia Serafino ◽  
Maria Beatrice Valli ◽  
Federica Andreola ◽  
Annalisa Crema ◽  
Giampietro Ravagnan ◽  
...  

1997 ◽  
Vol 139 (5) ◽  
pp. 1157-1168 ◽  
Author(s):  
Tao Zhang ◽  
Siew Heng Wong ◽  
Bor Luen Tang ◽  
Yue Xu ◽  
Frank Peter ◽  
...  

Yeast Bet1p participates in vesicular transport from the endoplasmic reticulum to the Golgi apparatus and functions as a soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) associated with ER-derived vesicles. A mammalian protein (rbet1) homologous to Bet1p was recently identified, and it was concluded that rbet1 is associated with the Golgi apparatus based on the subcellular localization of transiently expressed epitope-tagged rbet1. In the present study using rabbit antibodies raised against the cytoplasmic domain of rbet1, we found that the majority of rbet1 is not associated with the Golgi apparatus as marked by the Golgi mannosidase II in normal rat kidney cells. Rather, rbet1 is predominantly associated with vesicular spotty structures that concentrate in the peri-Golgi region but are also present throughout the cytoplasm. These structures colocalize with the KDEL receptor and ERGIC-53, which are known to be enriched in the intermediate compartment. When the Golgi apparatus is fragmented by nocodazole treatment, a significant portion of rbet1 is not colocalized with structures marked by Golgi mannosidase II or the KDEL receptor. Association of rbet1 in cytoplasmic spotty structures is apparently not altered by preincubation of cells at 15°C. However, upon warming up from 15 to 37°C, rbet1 concentrates into the peri-Golgi region. Furthermore, rbet1 colocalizes with vesicular stomatitis virus G-protein en route from the ER to the Golgi. Antibodies against rbet1 inhibit in vitro transport of G-protein from the ER to the Golgi apparatus in a dose-dependent manner. This inhibition can be neutralized by preincubation of antibodies with recombinant rbet1. EGTA is known to inhibit ER-Golgi transport at a stage after vesicle docking but before the actual fusion event. Antibodies against rbet1 inhibit ER-Golgi transport only when they are added before the EGTA-sensitive stage. These results suggest that rbet1 may be involved in the docking process of ER- derived vesicles with the cis-Golgi membrane.


1977 ◽  
Vol 146 (1) ◽  
pp. 201-217 ◽  
Author(s):  
SB Halstead ◽  
EJ O'Rourke

Cultured mononuclear peripheral blood leukocytes (PBL) from nonimmune human beings and monkeys are nonpermissive to dengue 2 virus (D2V) infection at multiplicities of infection of 0.001-0.1, but become permissive when non-neutralizing dengue antibody is added to medium. D2V infection occurred in PBL prepared from anti-coagulated but not from defibrinated plasma. Infection enhancement was produced by multiple lots of heterotypic anti-dengue raised in several mammalian species. Homotypic anti-dengue neutralized D2V at high concentrations but enhanced at low concentrations; enhancement end point in one serum was 1:320,000. The infection-enhancing factor was a noncytophilic antibody of the IgG class. D2V infection occurred in the absence of heat-labile complement components but did not occur when complexes were prepared with anti- dengue F(ab)(2). Treatment of PBL with several proteases increased permissiveness to D2V infection by immune complexes but not by virus alone. Two rhesus monkey serums collected 14 days after D2V infection contained an IgG antibody with high-titered enhancing activity but with no hemagglutination-inhibition or neutralizing activity. Virus-antibody complexes are irreversibly attached to PBL within 15 min and completely internalized in 60 min. There was considerable variation in cellular infection in different experiments, however, maximum virus yields usually exceeded 1,000 plaque-forming units per 1 x 10(6) PBL occurring between 2 and 4 days in culture. In vitro antibody-dependent infection of PBL provides a possible model for study of pathogenetic mechanisms in infants with dengue shock syndrome who passively acquire maternal anti-dengue IgG.


1975 ◽  
Vol 67 (2) ◽  
pp. 320-344 ◽  
Author(s):  
B Meyrick ◽  
L Reid

Incorporation of [3H]threonine and [3H]glucose by the mucous and serous cells of the human bronchial submucosal gland has been studied over 8 h using, for the first time in vitro pulse labeling and electron microscope autoradiography. In assessing the autoradiographs, two methods were compared, the circle analysis and the recently described hypothetical grain analysis. Preliminary studies showed formaldehyde to be the most suitable fixative. Chemical analysis of tissue revealed that [3H]threonine was incorporated into the polypeptide moiety of the bronchial gland product and that metabolites of [3H]-glucose were incorporated into the carbohydrate. Tritiated threonine was first localized in the endoplasmic reticulum of both mucous and serous cells and later migrated to the Golgi apparatus, while metabolites of [3H]glucose localized first mainly in the Golgi apparatus. From here, both radioactive precursors were next identified in vacuoles and, finally, in secretory granules. The mucous cell incorporated strikingly more of both radioactive precursors than the serous cell. Thus, it seems that oligosaccharides of mucous and serous cell glycoproteins are synthesized mainly in the Golgi apparatus and added there to the polypeptide core which is synthesized in the endoplasmic reticulum. The relationship of the mucous cell to the serous cell is discussed. It seems that under "normal" conditions each cell represents a different line but that injury may transform a serous cell into a mucous cell.


2001 ◽  
Vol 152 (5) ◽  
pp. 935-944 ◽  
Author(s):  
Ken Sato ◽  
Miyuki Sato ◽  
Akihiko Nakano

Rer1p, a yeast Golgi membrane protein, is required for the retrieval of a set of endoplasmic reticulum (ER) membrane proteins. We present the first evidence that Rer1p directly interacts with the transmembrane domain (TMD) of Sec12p which contains a retrieval signal. A green fluorescent protein (GFP) fusion of Rer1p rapidly cycles between the Golgi and the ER. Either a lesion of coatomer or deletion of the COOH-terminal tail of Rer1p causes its mislocalization to the vacuole. The COOH-terminal Rer1p tail interacts in vitro with a coatomer complex containing α and γ subunits. These findings not only give the proof that Rer1p is a novel type of retrieval receptor recognizing the TMD in the Golgi but also indicate that coatomer actively regulates the function and localization of Rer1p.


1964 ◽  
Vol 21 (3) ◽  
pp. 339-351 ◽  
Author(s):  
Nathan Lane ◽  
Lucien Caro ◽  
Luis R. Otero-Vilardebó ◽  
Gabriel C. Godman

The location of bound S35 in the goblet cell of the rat colon at time points from 2 to 60 minutes after administration of S35 as sodium sulfate has been observed in vivo and in vitro by radioautographic techniques. Grains were first observed by electron microscopy over the stacked lamellae of the paranuclear part of the Golgi apparatus. The label was subsequently found associated with the supranuclear Golgi lamellae and was then seen associated with the smooth membranes limiting the mucin granules in the goblet. Finally, between ½ and 1 hour, the secreted mucus product in the crypts became radioactive. Neither mitochondria nor the endoplasmic reticulum was labeled. It is concluded that the Golgi apparatus is the organelle in which sulfation occurs.


1966 ◽  
Vol 123 (4) ◽  
pp. 757-766 ◽  
Author(s):  
Zanvil A. Cohn ◽  
Martha E. Fedorko ◽  
James G. Hirsch

A combined morphological, autoradiographic, and cytochemical study at the electron microscope level has been directed towards the formation of electron-opaque granules of cultured macrophages. Labeling of the membrane-bound vesicular structures of pinocytic origin was accomplished with colloidal gold. The initial uptake of gold occurred within micropinocytic vesicles. These electron-lucent vesicles subsequently fused with and discharged their contents into larger pinocytic vacuoles. Colloidal gold was homogeneously distributed in the large pinosomes. In contrast, gold was initially deposited in the periphery of preformed dense granules indicating that these structures were also in constant interaction with the external environment. Colloidal gold was not observed within the cisternae of the endoplasmic reticulum nor within the saccules or vesicles of the Golgi apparatus. There were, however, many small, gold-free vesicles, indistinguishable from Golgi vesicles, which were preferentially aligned about and appeared to fuse with the large pinosomes. The intracellular flow of leucine-H3-labeled protein was followed by electron microscopic autoradiography. After a 15 min pulse of labeled amino acid there was initial labeling of the rough endoplasmic reticulum. Subsequently, much of the label appeared in the Golgi complex. At still later time periods the cytoplasmic dense granules contained the majority of the isotope. Acid phosphatase activity was localized to the dense granules and in the majority of cells to the Golgi apparatus. It is suggested that hydrolytic enzymes are initially synthesized in the endoplasmic reticulum and are then transferred to the Golgi apparatus. Here they are packaged into small Golgi vesicles which represent the primary lysosome of macrophages. The Golgi vesicles subsequently fuse with pinosomes, thereby discharging their hydrolases and forming digestive granules or secondary lysosomes.


1968 ◽  
Vol 38 (2) ◽  
pp. 392-402 ◽  
Author(s):  
Martha E. Fedorko ◽  
James G. Hirsch ◽  
Zanvil A. Cohn

Continuous phase-contrast observations have been made on macrophages following exposure to chloroquine. The initial abnormality is the appearance in the Golgi region of small vacuoles with an intermediate density between that of pinosomes and granules. Over the course of 1–2 hr these vacuoles grow larger and accumulate amorphous material or lipid. Pinosomes or granules frequently fuse with the toxic vacuoles. Chloroquine derivatives can be seen by fluorescence microscopy; the drug is rapidly taken up by macrophages and localized in small foci in the Golgi region. Chloroquine continues to produce vacuoles when pinocytosis is suppressed. Electron microscopic studies of chloroquine effects on macrophages preincubated with colloidal gold to label predominately pinosomes or granules suggest that toxic vacuoles can arise from unlabeled organelles. Later vacuoles regularly acquire gold label, apparently by fusion, from both granules and pinosomes. L cells also develop autophagic vacuoles after exposure to chloroquine. Smooth endoplasmic reticulum apparently is involved early in the autophagic process in these cells. Information now available suggests an initial action of chloroquine on Golgi or smooth endoplasmic reticulum vesicles, and on granules, with alterations in their membranes leading to fusion with one another and with pinosomes.


Sign in / Sign up

Export Citation Format

Share Document