scholarly journals T-cell lymphoma induction by radiation leukemia virus in athymic nude mice.

1978 ◽  
Vol 148 (5) ◽  
pp. 1292-1310 ◽  
Author(s):  
P Ricciardi-Castagnoli ◽  
M Lieberman ◽  
O Finn ◽  
H S Kaplan

We report the development of extrathymic lymphoblastic lymphomas in RadLV-inoculated congenitally athymic nude mice. Thus, a leukemogenic virus which appears to require the presence of a thymus for its replication in normothymic mice can infect and transform target cells in the absence of this organ in the athymic host. The cells of one of these lymphomas have been established in vitro as a permanent cell line, BALB/Nu1. This cell line as well as a lymphoma induced in NIH/Swiss nude mice exhibit several T-cell markers, including terminal deoxynucleotidyl transferase activity, Thy-1.2, and Ly-2.2, but not Ly-1.2 nor TL. Ig determinants were not detected. The characteristics of the tumor cells support the view that cells with T-cell markers may normally exist in nude mice and undergo neoplastic transformation and clonal expansion after infection with a leukemogenic virus. The alternative possibility that virus-induced differentiation of prothymocytes may lead to the expression of Thy-1.2 and Ly-2.2 antigens is also considered. BALB/Nu1 cells release large numbers of type C viral particles. The virus, designated radiation leukemia virus (RadLV)/Nu1, has RTase activity and the protein profile characteristic of murine leukemia virus (MuLV). In radioimmunoassays, it cross-reacts completely with RadLV/VL3, a virus obtained from RadLV-induced C57BL/Ka thymic lymphoma cells in culture, and slightly with a xenotropic virus (BALB:virus-2) and with AKR MuLV. On inoculation into C57BL/Ka mice it has thymotropic and leukemogenic activity. In vitro it is B-tropic, poorly fibrotropic, and has limited xenotropic activity. Thus, RadLV/Nu1 appears to be biologically and serologically similar or identical to its parent virus, RadLV.

Blood ◽  
1986 ◽  
Vol 68 (5) ◽  
pp. 1065-1073 ◽  
Author(s):  
S Koizumi ◽  
H Seki ◽  
T Tachinami ◽  
M Taniguchi ◽  
A Matsuda ◽  
...  

Abstract A 14-year-old Japanese female with neutropenia showed malignant proliferation of the large granular lymphocytes (LGLs). These LGLs were E rosette+ and Fc(IgG) receptor+ and therefore are referred to as T gamma lymphocytes. They were also Leu-11+ and OKT11+; however, they were clearly negative for Leu-7, OKT3, OKT8, OKM1, and HNK-1 antigens as well as for terminal deoxynucleotidyl transferase activity. Karyotype analysis revealed 47, XXX. The LGLs showed no rearrangement of T cell receptor C beta genes. The natural killer (NK) cell activity against K562 target cells was low, but was significantly augmented after stimulation by recombinant human interleukin 2 (IL 2) in contrast to minimal NK boosting by recombinant human gamma-interferon (gamma- IFN). Such a unique responsive ability to lymphokines was quite similar to that noted in fetal and cord blood cells. These LGLs also demonstrated a considerable increase in antibody-dependent cell- mediated cytotoxicity (ADCC) and lymphokine-activated killer (LAK) activity after a short incubation with IL 2. Although in a resting stage they showed no IL 2 receptor expression as examined by anti-Tac antibody, Tac antigen appeared after IL 2 treatment followed by a marked increase in 3H-thymidine incorporation and a remarkable production of gamma-IFN. To investigate the mechanism of neutropenia, in vitro IL 2-stimulated coculture studies of these cells with normal bone marrow cells were performed. Colony formation of myeloid progenitors (CFU-C) was significantly suppressed. In addition, the conditioned medium from IL 2-stimulated LGLs indicated a remarkable suppression of CFU-C. These results suggest that these LGLs with a Leu- 11+, Leu-7- surface phenotype might belong to a unique subset of pre-NK cells that are functionally and phenotypically similar to those represented at any early stage of human ontogeny and that they strongly express Tac antigen under the influence of IL 2 administration, followed by remarkable cell proliferation and gamma-IFN production.


Blood ◽  
1986 ◽  
Vol 68 (5) ◽  
pp. 1065-1073 ◽  
Author(s):  
S Koizumi ◽  
H Seki ◽  
T Tachinami ◽  
M Taniguchi ◽  
A Matsuda ◽  
...  

A 14-year-old Japanese female with neutropenia showed malignant proliferation of the large granular lymphocytes (LGLs). These LGLs were E rosette+ and Fc(IgG) receptor+ and therefore are referred to as T gamma lymphocytes. They were also Leu-11+ and OKT11+; however, they were clearly negative for Leu-7, OKT3, OKT8, OKM1, and HNK-1 antigens as well as for terminal deoxynucleotidyl transferase activity. Karyotype analysis revealed 47, XXX. The LGLs showed no rearrangement of T cell receptor C beta genes. The natural killer (NK) cell activity against K562 target cells was low, but was significantly augmented after stimulation by recombinant human interleukin 2 (IL 2) in contrast to minimal NK boosting by recombinant human gamma-interferon (gamma- IFN). Such a unique responsive ability to lymphokines was quite similar to that noted in fetal and cord blood cells. These LGLs also demonstrated a considerable increase in antibody-dependent cell- mediated cytotoxicity (ADCC) and lymphokine-activated killer (LAK) activity after a short incubation with IL 2. Although in a resting stage they showed no IL 2 receptor expression as examined by anti-Tac antibody, Tac antigen appeared after IL 2 treatment followed by a marked increase in 3H-thymidine incorporation and a remarkable production of gamma-IFN. To investigate the mechanism of neutropenia, in vitro IL 2-stimulated coculture studies of these cells with normal bone marrow cells were performed. Colony formation of myeloid progenitors (CFU-C) was significantly suppressed. In addition, the conditioned medium from IL 2-stimulated LGLs indicated a remarkable suppression of CFU-C. These results suggest that these LGLs with a Leu- 11+, Leu-7- surface phenotype might belong to a unique subset of pre-NK cells that are functionally and phenotypically similar to those represented at any early stage of human ontogeny and that they strongly express Tac antigen under the influence of IL 2 administration, followed by remarkable cell proliferation and gamma-IFN production.


1979 ◽  
Vol 149 (6) ◽  
pp. 1460-1476 ◽  
Author(s):  
S Gillis ◽  
N A Union ◽  
P E Baker ◽  
K A Smith

In addition to allowing for the long-term culture of both murine and human cytolytic T lymphocytes, T-cell growth factor (TCGF) functions as the key proliferation-inducing second signal in both T-cell antigen sensitization and mitogenesis. The observation that thymocytes responded normally to T-cell mitogens in the presence of TCGF, prompted the investigation of the effect of TCGF on nude mouse lymphocyte responses in vitro. We found that spleen, lymph node, and bone marrow cells, isolated from nude mice, were incapable of producing TCGF yet responded normally to T-cell mitogen sensitization provided stimulation was conducted in the presence of TCGF. Nude mouse spleen cells were also capable of responding to alloantigen sensitization in mixed lymphocyte cultures (NLMC) conducted in the presence of TCGF. Thy-1 antigen-positive cells harvested from TCGF-supplemented nude mouse MLC effectively mediated the cytolysis of alloantigen-specific target cells as tested in standard 51Cr-release assays. Cytolytic nude mouse effector cells have remained in TCGF-dependent culture for over 3 mo during which they have continued to mediate significant levels of alloantigen-specific cytolytic reactivity. These results suggest that prothymocytes present in nude mice are capable of responding to immunologic stimuli by differentiating, in vitro, into cytolytic T lymphocytes and that furthermore, a major function of the thymus may be to effect the maturation of TCGF-producing cells.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2354-2354
Author(s):  
Jonathan D Kiefer ◽  
Renier Myburgh ◽  
Norman F Russkamp ◽  
Laura Volta ◽  
Adrian Guggisberg ◽  
...  

Abstract INTRODUCTION: Hematopoietic stem and progenitor cells (HSPCs) support life-long hematopoiesis. A single HSPC can also be at the origin of hematological malignancies, such as Acute Myeloid Leukemia (AML) and Myelodysplastic Syndrome (MDS). Allogeneic HSCT with the intent to eliminate recipient AML or MDS and at the same time replace recipient HSPC with donor-HSPC and immune cells is a life-saving therapeutic option for many patients. However, chemotherapy (and sometimes in addition gamma-irradiation based conditioning regiments) prior to HSCT are associated with substantial toxicity. Thus, due to benefit-outweighing treatment-related toxicity and mortality, frail, multi-morbid and elderly patients are usually excluded from potentially curative allo-HSCT approaches. For these reasons, more selective preconditioning strategies, leading to residual AML/MDS elimination and creating "space" for incoming HSPCs, are required. Selective targeting of CD117 with monoclonal antibodies has been proposed as a strategy to remove endogenous HSPCs, enabling an effective but mild preconditioning. However, specific conditioning of AML and MDS patients, prior to HSCT, might require a more potent effector cell type. We hypothesized that a CD117 and CD3 binding, T cell engaging and activating antibody construct (CD117xCD3 TEA) with a short half-life might be an ideal means to selectively eliminate CD117-expressing healthy HSPCs and residual CD117-expressing AML or MDS cells prior to allo-HSCT. METHODS: We cloned and expressed CD117xCD3 TEA in tandem scFv format and produced it by transient gene expression in Chinese hamster ovary cells (CHO-S). The fusion proteins were purified to homogeneity by protein A affinity chromatography. We derived target cell lines with varying surface levels of CD117 (high, medium and low) from CD117 negative parental cell lines HL-60 and MOLM-14 (Myburgh et al., Leukemia, 2020). To assess T cell mediated killing of target cells, we mixed them with human T cells (purified and enriched after negative selection) at varying Effector-to-Target (E:T) cell ratios and added CD117xCD3 TEA at different concentrations. The mixture was incubated and specific killing was quantified via flow cytometry at different time-points. RESULTS: In order to characterize the biocidal properties of CD117xCD3 TEA, we performed in vitro killing experiments against cell lines, HSCPs from healthy donors and blast cells from AML patients. A dose-dependent in vitro killing of the cell lines was observed in the presence of various concentrations of CD117xCD3 TEA and of human T cells at an E:T cell ratio of 10:1 after 24h. The HL60 CD117 high cell line was efficiently lysed (~90%) at 100 ng/ml of CD117xCD3 TEA, corresponding to ~1.8 nM. In similar experiments with different E:T cell ratios, we observed that both HL60 CD117 high and CD117 medium cells could be quantitatively killed at E:T ratios as low as 1:1, while the killing of CD117 low cells required a higher density of T cells. The biocidal effect on non-transduced HL60 cells was negligibly low, confirming the requirement of a simultaneous engagement of CD117 and CD3 for specific killing. We repeated the same experiment with an engineered MOLM14 cell line, which also expressed CD117 at comparable high levels, incubating the target cell line with human T cells at an E:T of 1:1 for 24, 48 or 72, 120 or 192 hours. Complete killing of the target cell line was achieved at 120 and 192 hours and after supplemental addition of T cells and CD117xCD3 TEA at 72 hours (see example figure). Experiments with primary cells (HSPCs from healthy donors or blast cells from AML patients) at an E:T of 1:1 confirmed specific killing of target cells in an antigen-density- and concentration-dependent manner after 48h. CONCLUSIONS: We have generated a novel bispecific antibody, which binds to human CD117 (expressed on HSCPs and AML/MDS blast cells) and to CD3 (expressed on T cells), which we term CD117xCD3 TEA. The antibody induces selective T cell-mediated killing of cell lines with different surface levels of CD117, as well as of healthy HSPCs and primary human AML cells. Thus, the newly generated CD117xCD3 TEA might be developed clinically in order to erradicate residual AML/MDS and at the same time serve as a milder preconditioning approach prior to allo-HSCT in frail AML/MDS patients. Figure 1 Figure 1. Disclosures Kiefer: ETH Zurich: Current Employment, Patents & Royalties: CD117xCD3 TEA. Myburgh: University of Zurich: Patents & Royalties: CD117xCD3 TEA. Guggisberg: F. Hoffmann-La Roche AG: Current Employment. Abdelmotaleb: F. Hoffmann-La Roche AG: Current Employment. Mock: Philogen S.p.A.: Current Employment. Neri: Philogen S.p.A.: Current Employment, Current equity holder in publicly-traded company, Divested equity in a private or publicly-traded company in the past 24 months, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties: Multiple patents on vascular targeting; ETH Zurich: Patents & Royalties: CD117xCD3 TEA. Manz: University of Zurich: Patents & Royalties: CD117xCD3 TEA; CDR-Life Inc: Consultancy, Current holder of stock options in a privately-held company.


Author(s):  
E.C. Chew ◽  
C.L. Li ◽  
D.P. Huang ◽  
H.C. Ho ◽  
L.S. Mak ◽  
...  

An epithelial cell line, NPC/HK1, has recently been established from a biopsy specimen of a recurrent tumour of the nasopharynx which was histologically diagnosed as a moderately to well differentiated squamous cell carcinoma. A definite decrease in the amount of tonofilaments and desmosomes in the NPC/HK1 cells during the cell line establishment was observed. The present communication reports on the fine structures of the NPC/HK1 cells heterotraneplanted in athymic nude mice.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 127
Author(s):  
Norbert Kassay ◽  
János András Mótyán ◽  
Krisztina Matúz ◽  
Mária Golda ◽  
József Tőzsér

The human T-lymphotropic viruses (HTLVs) are causative agents of severe diseases including adult T-cell leukemia. Similar to human immunodeficiency viruses (HIVs), the viral protease (PR) plays a crucial role in the viral life-cycle via the processing of the viral polyproteins. Thus, it is a potential target of anti-retroviral therapies. In this study, we performed in vitro comparative analysis of human T-cell leukemia virus type 1, 2, and 3 (HTLV-1, -2, and -3) proteases. Amino acid preferences of S4 to S1′ subsites were studied by using a series of synthetic oligopeptide substrates representing the natural and modified cleavage site sequences of the proteases. Biochemical characteristics of the different PRs were also determined, including catalytic efficiencies and dependence of activity on pH, temperature, and ionic strength. We investigated the effects of different HIV-1 PR inhibitors (atazanavir, darunavir, DMP-323, indinavir, ritonavir, and saquinavir) on enzyme activities, and inhibitory potentials of IB-268 and IB-269 inhibitors that were previously designed against HTLV-1 PR. Comparative biochemical analysis of HTLV-1, -2, and -3 PRs may help understand the characteristic similarities and differences between these enzymes in order to estimate the potential of the appearance of drug-resistance against specific HTLV-1 PR inhibitors.


1976 ◽  
Vol 144 (4) ◽  
pp. 1134-1140 ◽  
Author(s):  
T G Rehn ◽  
J K Inman ◽  
G M Shearer

The specificity of C57BL/10 cytotoxic effector cells generated by in vitro sensitization with autologous spleen cells modified with a series of related nitrophenyl compounds was investigated. The failure of trinitrophenyl (TNP)-sensitized effector cells to lyse TNP-beta-alanylglycylglycyl(AGG)-modified target cells is presented as evidence contradicting the intimacy or dual receptor model or T-cell recognition in its simplest form. Data are also shown indicating that sensitization with N-(3-nitro-4-hydroxy-5-iodophenylacetyl)-AGG-modified stimulating cells generates noncross-reacting clones of cytotoxic effector cells.


2014 ◽  
Vol 38 (5) ◽  
pp. 608-612 ◽  
Author(s):  
Dai Chihara ◽  
Yoshitoyo Kagami ◽  
Harumi Kato ◽  
Noriaki Yoshida ◽  
Tohru Kiyono ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document