scholarly journals Dendritic cells induce T lymphocytes to release B cell-stimulating factors by an interleukin 2-dependent mechanism.

1983 ◽  
Vol 158 (6) ◽  
pp. 2040-2057 ◽  
Author(s):  
K Inaba ◽  
A Granelli-Piperno ◽  
R M Steinman

Dendritic cells (DC) are essential accessory cells for T-dependent antibody responses in culture (1). We have outlined a three-stage mechanism to explain the capacity of DC to stimulate primary antibody responses to heterologous erythrocytes. First, DC induced T cells to produce and to become responsive to interleukin 2 (IL-2). This stage corresponded to the syngeneic mixed leukocyte reaction (2) and involved the clustering of DC and T cells into discrete aggregates. Isolated clusters, representing 5-10% of the culture, were critical for IL-2 release and the production of IL-2-responsive T blasts. In the second stage, IL-2 directly triggered the responsive T cells to release B cell helper factors. This role for IL-2 was documented with a rabbit anti-IL-2 reagent, purified IL-2, and T cells that had been rendered IL-2 responsive by an initial co-culture with DC. T cell growth was not required for IL-2-mediated helper factor release, since irradiated and untreated responders produced similar levels of factor and did so within 3 h of the addition of IL-2. In the final stage, helper factors stimulated the development of antibody-secreting cells from purified B lymphocytes. The helper factors were not H-2 restricted, but for both sheep and horse erythrocytes, the response to factors was antigen dependent and specific. The IL-2 that was present in the DC/T cell-conditioned medium did not act on B cells, since helper activity was neither neutralized nor absorbed by our anti-IL-2 reagent. We conclude that the ability of the DC to induce IL-2 release and responsiveness underlies its capacity to trigger both T and B lymphocyte reactions.

1973 ◽  
Vol 137 (6) ◽  
pp. 1405-1418 ◽  
Author(s):  
David H. Katz ◽  
Toshiyuki Hamaoka ◽  
Baruj Benacerraf

Several experimental approaches, designed specifically to circumvent the possible contribution of a complicating "allogeneic effect," have been successfully used to answer the question of physiologic cooperative interactions between histoincompatible T and B lymphocytes in antibody responses to hapten-protein conjugates. This was accomplished for in vivo cell transfer studies by using an F1 hybrid host as the recipient of irradiated, carrier-primed T lymphocytes from one parent and 2,4-dinitrophenyl (DNP)-primed B lymphocytes from the opposite strain. Under these conditions, very good T-B cell cooperative interactions were observed to occur between T and B lymphocyte populations derived from syngeneic donors, whereas no cooperative response was obtained when T cells were derived from one parental strain and B cells from the other. Corroborative experiments were performed in a totally in vitro system in which DNP-primed B cells developed good secondary anti-DNP antibody responses in vitro to soluble DNP-keyhole limpet hemocyanin (KLH) when cultured in the presence of irradiated KLH-primed T cells derived from syngenic donors but not from allogeneic donors. The failure of histoincompatible T and B lymphocytes to effect physiologic cooperative interactions has important implications for our understanding of how such interactions normally occur. The possibility that these results reflect the existence of a "block" of some sort to cell-cell interaction by virtue of the presence of a foreign major histocompatibility antigen on the surface of either cell has been definitively ruled out in the present studies. These observations demonstrate that the gene(s) that conditions the capability for physiologic T-B cell cooperation must be shared in common by the respective cell types, and suggest, furthermore, that this gene (or genes) belongs to the major histocompatibility system of the mouse. These findings, together with other relevant phenomena described previously, have led us to postulate that there exists on the B lymphocyte surface an "acceptor" molecule either for the putative active T cell product or for the T cell itself. The important genetic considerations and the possible sequence of events surrounding the actual T-B cell interaction implied by these postulates are discussed in detail.


1981 ◽  
Vol 154 (5) ◽  
pp. 1681-1693 ◽  
Author(s):  
H J Leibson ◽  
P Marrack ◽  
J W Kappler

A helper factor(s) distinct from interleukin 2 (IL-2) was shown to be present in the concanavalin A-stimulated supernatant of normal mouse spleen cells (normal Con A Sn). Spleen cells thoroughly depleted of T cells required both IL-2 and this factor to produce antibody-secreting cells in response to sheep erythrocytes, although in the presence of IL-2 and a few T cells the requirement for the factor was less apparent. The factor had an apparent approximately 40,000 mol wt. The factor was found in normal Con A Sn that had been depleted of IL-2 by absorption with IL-2-dependent T cells and was absent from Con A-stimulated supernatants of the IL-2-producing T cell hybridoma, FS6-14.13. These results indicate that multiple helper factors control the B cell response to antigen and that IL-2, in addition to its T cell growth promoting activity, plays a direct role in B cell responses.


2019 ◽  
Vol 14 (4) ◽  
pp. 525-537 ◽  
Author(s):  
Alistair Noble ◽  
Lydia Durant ◽  
Lesley Hoyles ◽  
Anne L Mccartney ◽  
Ripple Man ◽  
...  

Abstract Background and Aims The intestinal microbiota is closely associated with resident memory lymphocytes in mucosal tissue. We sought to understand how acquired cellular and humoral immunity to the microbiota differ in health versus inflammatory bowel disease [IBD]. Methods Resident memory T cells [Trm] in colonic biopsies and local antibody responses to intraepithelial microbes were analysed. Systemic antigen-specific immune T and B cell memory to a panel of commensal microbes was assessed. Results Systemically, healthy blood showed CD4 and occasional CD8 memory T cell responses to selected intestinal bacteria, but few memory B cell responses. In IBD, CD8 memory T cell responses decreased although B cell responses and circulating plasmablasts increased. Possibly secondary to loss of systemic CD8 T cell responses in IBD, dramatically reduced numbers of mucosal CD8+ Trm and γδ T cells were observed. IgA responses to intraepithelial bacteria were increased. Colonic Trm expressed CD39 and CD73 ectonucleotidases, characteristic of regulatory T cells. Cytokines/factors required for Trm differentiation were identified, and in vitro-generated Trm expressed regulatory T cell function via CD39. Cognate interaction between T cells and dendritic cells induced T-bet expression in dendritic cells, a key mechanism in regulating cell-mediated mucosal responses. Conclusions A previously unrecognised imbalance exists between cellular and humoral immunity to the microbiota in IBD, with loss of mucosal T cell-mediated barrier immunity and uncontrolled antibody responses. Regulatory function of Trm may explain their association with intestinal health. Promoting Trm and their interaction with dendritic cells, rather than immunosuppression, may reinforce tissue immunity, improve barrier function, and prevent B cell dysfunction in microbiota-associated disease and IBD aetiology.


1997 ◽  
Vol 185 (5) ◽  
pp. 941-952 ◽  
Author(s):  
Bertrand Dubois ◽  
Béatrice Vanbervliet ◽  
Jérome Fayette ◽  
Catherine Massacrier ◽  
Cees Van Kooten ◽  
...  

After antigen capture, dendritic cells (DC) migrate into T cell–rich areas of secondary lymphoid organs, where they induce T cell activation, that subsequently drives B cell activation. Here, we investigate whether DC, generated in vitro, can directly modulate B cell responses, using CD40L-transfected L cells as surrogate activated T cells. DC, through the production of soluble mediators, stimulated by 3- to 6-fold the proliferation and subsequent recovery of B cells. Furthermore, after CD40 ligation, DC enhanced by 30–300-fold the secretion of IgG and IgA by sIgD− B cells (essentially memory B cells). In the presence of DC, naive sIgD+ B cells produced, in response to interleukin-2, large amounts of IgM. Thus, in addition to activating naive T cells in the extrafollicular areas of secondary lymphoid organs, DC may directly modulate B cell growth and differentiation.


1981 ◽  
Vol 154 (5) ◽  
pp. 1608-1617 ◽  
Author(s):  
J L Greenstein ◽  
E Lord ◽  
J W Kappler ◽  
P C Marrack

We have investigated the induction of antibody responses to erythrocyte (RBC)-bound antigens in the (CBA/N x B10)F1 mouse. Male B cells, which express the CBA/N defect, were shown to be unresponsive to RBC antigens when the delivered T cell helper activity was solely nonspecific. Thus we demonstrated that defective B cells did not respond to concanavalin A supernatants or bystander helper activity, in spite of the fact that CBA/N-defective mice could produce these T cell activities. The defective B cell did not respond to RBC-bound antigen in the presence of RBC-primed T cells, although the magnitude of this response was usually twofold less than normal controls. The insensitivity of CBA/N defective B cells to nonspecific T cell helper activities seemed to involve at least the inability of RBC antigens to activate defective B cells in the absence of antigen-specific T cell help.


1994 ◽  
Vol 14 (2) ◽  
pp. 1095-1103
Author(s):  
A L Burkhardt ◽  
T Costa ◽  
Z Misulovin ◽  
B Stealy ◽  
J B Bolen ◽  
...  

Signal transduction by antigen receptors and some Fc receptors requires the activation of a family of receptor-associated transmembrane accessory proteins. One common feature of the cytoplasmic domains of these accessory molecules is the presence is at least two YXXA repeats that are potential sites for interaction with Src homology 2 domain-containing proteins. However, the degree of similarity between the different receptor-associated proteins varies from that of T-cell receptor (TCR) zeta and Fc receptor RIIIA gamma chains, which are homologous, to the distantly related Ig alpha and Ig beta proteins of the B-cell antigen receptor. To determine whether T- and B-cell antigen receptors are in fact functionally homologous, we have studied signal transduction by chimeric immunoglobulins bearing the Ig alpha or Ig beta cytoplasmic domain. We found that Ig alpha and Ig beta cytoplasmic domains were able to activate Ca2+ flux, interleukin-2 secretion, and phosphorylation of the same group of cellular substrates as the TCR in transfected T cells. Chimeric proteins were then used to examine the minimal requirements for activation of the Fyn, Lck, and ZAP kinases in T cells. Both Ig alpha and Ig beta were able to trigger Fyn, Lck, and ZAP directly without involvement of TCR components. Cytoplasmic tyrosine residues in Ig beta were required for recruitment and activation of ZAP-70, but these amino acids were not essential for the activation of Fyn and Lck. We conclude that Fyn and Lck are able to recognize a clustered nonphosphorylated immune recognition receptor, but activation of these kinases is not sufficient to induce cellular responses such as Ca2+ flux and interleukin-2 secretion. In addition, the molecular structures involved in antigen receptor signaling pathways are conserved between T and B cells.


2000 ◽  
Vol 74 (17) ◽  
pp. 7738-7744 ◽  
Author(s):  
Sangkon Oh ◽  
Maryna C. Eichelberger

ABSTRACT The developing immune response in the lymph nodes of mice infected with influenza virus has both Th1- and Th2-type characteristics. Modulation of the interactions between antigen-presenting cells and T cells is one mechanism that may alter the quality of the immune response. We have previously shown that the ability of dendritic cells (DC) to stimulate the proliferation of alloreactive T cells is changed by influenza virus due to viral neuraminidase (NA) activity. Here we show that DC infected with influenza virus A/PR/8/34 (PR8) stimulate T cells to produce different types of cytokines in a dose-dependent manner. Optimal amounts of the Th1-type cytokines interleukin-2 (IL-2) and gamma interferon (IFN-γ) were produced from T cells stimulated by DC infected with low doses of PR8, while the Th2-type cytokines IL-4 and IL-10 were produced only in response to DC infected with high doses of PR8. IL-2 and IFN-γ levels corresponded with T-cell proliferation and were dependent on the activity of viral NA on the DC surface. In contrast, IL-4 secretion required the treatment of T cells with NA. Since viral particles were released only from DC that are infected with high doses of PR8, our results suggest that viral NA on newly formed virus particles desialylates T-cell surface molecules to facilitate a Th2-type response. These results suggest that the activity of NA may contribute to the mixed Th-type response observed during influenza virus infection.


2018 ◽  
Vol 2 (19) ◽  
pp. 2568-2580 ◽  
Author(s):  
Suparna Dutt ◽  
Michelle B. Atallah ◽  
Yoshitaka Minamida ◽  
Alexander Filatenkov ◽  
Kent P. Jensen ◽  
...  

Abstract Conventional local tumor irradiation (LTI), delivered in small daily doses over several weeks, is used clinically as a palliative, rather than curative, treatment for chemotherapy-resistant diffuse large B-cell lymphoma (DLBCL) for patients who are ineligible for hematopoietic cell transplantation. Our goal was to test the hypothesis that accelerated, but not conventional, LTI would be more curative by inducing T cell–mediated durable remissions. We irradiated subcutaneous A20 and BL3750 lymphoma tumors in mice with a clinically relevant total radiation dose of 30 Gy LTI, delivered in 10 doses of 3 Gy over 4 days (accelerated irradiation) or as 10 doses of 3 Gy over 12 days (conventional irradiation). Compared with conventional LTI, accelerated LTI resulted in more complete and durable tumor remissions. The majority of these mice were resistant to rechallenge with lymphoma cells, demonstrating the induction of memory antitumor immunity. The increased efficacy of accelerated LTI correlated with higher levels of tumor cell necrosis vs apoptosis and expression of “immunogenic cell death” markers, including calreticulin, heat shock protein 70 (Hsp70), and Hsp90. Accelerated LTI–induced remissions were not seen in immunodeficient Rag-2−/− mice, CD8+ T-cell–depleted mice, or Batf-3−/− mice lacking CD8α+ and CD103+ dendritic cells. Accelerated, but not conventional, LTI in immunocompetent hosts induced marked increases in tumor-infiltrating CD4+ and CD8+ T cells and MHCII+CD103+CD11c+ dendritic cells and corresponding reductions in exhausted PD-1+Eomes+CD8+ T cells and CD4+CD25+FOXP3+ regulatory T cells. These findings raise the possibility that accelerated LTI can provide effective immune control of human DLBCL.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 279-284 ◽  
Author(s):  
O Ayanlar-Batuman ◽  
E Ebert ◽  
SP Hauptman

Abstract The present studies were designed to investigate the mechanism(s) of the defective T cell proliferative response to various stimuli in patients with B cell chronic lymphocytic leukemia B-CLL. In 14 patients with advanced B-CLL (stage III or IV) we found the T cell response in the autologous (auto) and allogeneic (allo) mixed lymphocyte reaction (MLR) to be 35.7% and 30% of the controls, respectively. Proliferation in the MLR depends upon the production of and response to interleukin 2 (IL 2), a T cell growth factor. IL 2 production in eight B-CLL patients was 22% of the control. The response to IL 2 was measured by the increase in the T cell proliferation in the MLR with the addition of IL 2. T cell proliferation in both the auto and allo MLR of CLL patients was significantly lower than in the controls after the addition of IL 2. The proliferative response of normal T cells to stimulation by CLL B cells was 50% of the control. This latter response was increased to control levels when cultures were supplemented with exogenous IL 2, suggesting that CLL B cells could stimulate IL 2 receptor generation in normal T cells in an allo MLR, but not IL 2 production. The presence of IL 2 receptors on activated T cells was directly determined using anti- Tac, a monoclonal antibody with specificity for the IL 2 receptor. Of the mitogen- or MLR-activated T cells in CLL patients, 6% and 10%, respectively, expressed Tac antigen, whereas identically stimulated control T cells were 60% and 47% Tac+, respectively. Our findings suggest that T cells in B-CLL are defective in their recognition of self or foreign major histocompatibility antigens as demonstrated by their impaired responsiveness in the MLR. Thus, these cells are unable to produce IL 2 or generate IL 2 receptors.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jean-François Daudelin ◽  
Mélissa Mathieu ◽  
Salix Boulet ◽  
Nathalie Labrecque

Following activation, naïve CD8+T cells will differentiate into effectors that differ in their ability to survive: some will persist as memory cells while the majority will die by apoptosis. Signals given by antigen-presenting cells (APCs) at the time of priming modulate this differential outcome. We have recently shown that, in opposition to dendritic cell (DC), CD40-activated B-(CD40-B) cell vaccination fails to efficiently produce CD8+memory T cells. Understanding why CD40-B-cell vaccination does not lead to the generation of functional long-lived memory cells is essential to define the signals that should be provided to naïve T cells by APCs. Here we show that CD40-B cells produce very low amount of IL-6 when compared to DCs. However, supplementation with IL-6 during CD40-B-cell vaccination did not improve memory generation. Furthermore, IL-6-deficient DCs maintained the capacity to promote the formation of functional CD8+effectors and memory cells. Our results suggest that in APC vaccination models, IL-6 provided by the APCs is dispensable for proper CD8+T-cell memory generation.


Sign in / Sign up

Export Citation Format

Share Document