scholarly journals Erythropoietin-independent erythrocyte production: signals through gp130 and c-kit dramatically promote erythropoiesis from human CD34+ cells.

1996 ◽  
Vol 183 (3) ◽  
pp. 837-845 ◽  
Author(s):  
X Sui ◽  
K Tsuji ◽  
S Tajima ◽  
R Tanaka ◽  
K Muraoka ◽  
...  

Erythropoietin (EPO) is the primary humoral regulator of erythropoiesis and no other factor has previously been reported to support proliferation and terminal maturation of erythroid cells from hemopoietic stem cells. Here we show that stimulation of glycoprotein (gp130) by a combination of recombinant human soluble interleukin 6 receptor (sIL-6R) and IL-6 but not sIL-6R or IL-6 alone can support proliferation, differentiation, and terminal maturation of erythroid cells in the absence of EPO from purified human CD34+ cells in suspension culture containing stem cell factor (SCF). A number of erythroid bursts and mixed erythroid colonies also developed in methylcellulose culture under the same combination. The addition of anti-gp130 monoclonal antibodies but not anti-EPO antibody to the same culture completely abrogated the generation of erythroid cells. These results clearly demonstrate that mature erythroid cells can be emerged from hemopoietic progenitors without EPO in vitro. Together with the previous reports that human sera contain detectable levels of sIL-6R, IL-6, and SCF, current data suggest that gp130 signaling in association with c-kit activation may play a role in human erythropoiesis in vivo.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2063-2063
Author(s):  
Naoya Uchida ◽  
Claire Drysdale ◽  
Morgan Yapundich ◽  
Jackson Gamer ◽  
Tina Nassehi ◽  
...  

Hematopoietic stem cell gene therapy for hemoglobin disorders, such as sickle cell disease, requires high-level gene marking and robust therapeutic globin expression in erythroid cells (>20% of γ- or β-globin production) for widespread successful clinical application. We previously demonstrated that lentiviral transduction of a truncated human erythropoietin receptor (thEpoR) gene allows for erythropoietin-dependent selective proliferation of gene-modified human erythroid cells during in vitro differentiation (ASH 2017). In this study, we sought to evaluate whether thEpoR can enhance the phenotypic effect of a therapeutic vector in erythroid cells in xenograft mouse and autologous non-human primate transplantation models. To investigate this hypothesis, we designed lentiviral vectors encoding both thEpoR and BCL11A-targeting micro RNA-adapted short hairpin RNA (shmiBCL11A), driven off an erythroid specific ankyrin 1 (ANK1) promoter. Both selective proliferation and high-level fetal hemoglobin (HbF) induction were observed in in vitro erythroid differentiation cultures using transduced human CD34+ cells. Healthy donor CD34+ cells were transduced with shmiBCL11A vector, thEpoR-shmiBCL11A vector, and GFP vector (control). Transduced cells were transplanted into immunodeficient NBSGW mice. Five months post-transplant, xenograft bone marrow cells were evaluated for human cell engraftment (human CD45+) and vector copy number (VCN) in both human CD34+ progenitor cells and glycophorin A+ (GPA+) erythroid cells. HbF production was also measured in GPA+ erythroid cells by reverse phase HPLC. We observed efficient transduction in transduced CD34+ cells in vitro (VCN 2.1-5.1) and similar human cell engraftment among all groups (84-89%). The VCN with thEpoR-shmiBCL11A transduction was 3-fold higher in human erythroid cells when compared to CD34+ cells (p<0.01), but not with shmiBCL11A or GFP vectors. HbF levels were significantly elevated in thEpoR-shmiBCL11A vector (43±6%, p<0.01) when compared to no transduction control (1±0%), but not for either shmiBCL11A vector (3±1%) or GFP vector (1±0%). These data demonstrate selective proliferation of gene-modified erythroid cells, as well as enhanced HbF induction with thEpoR-shmiBCL11A transduction. We then performed autologous rhesus CD34+ cell transplantation using either shmiBCL11A vector (142562 and RA0706, n=2, compared to a GPA promoter-derived shmiBCL11A vector) or thEpoR-shmiBCL11A vector (ZL50 and ZM24, n=2, compared to a Venus-encoding vector). Transduced CD34+ cells were transplanted into autologous rhesus macaques following 2x5Gy total body irradiation. Efficient transduction was observed in CD34+ cells in vitro among all 4 macaques (VCN 3.8-8.7) using a high-density culture protocol (Uchida N, Mol Ther Methods Clin Dev. 2019). In shmiBCL11A transduction animals, engraftment of gene-modified cells (VCN 0.2-1.0) and robust HbF induction (14-16%) were observed 1 month post-transplant. However, VCN and HbF levels were reduced down to VCN ~0.1 and HbF ~0.4% in both animals 6 months post-transplant. In contrast, a thEpoR-shmiBCL11A transduction animal (ZL50) resulted in engraftment of gene-modified cells (VCN 0.8-1.0) and robust HbF induction (~18%) 1 month post-transplant, with both gene marking and HbF levels remaining high at VCN 0.6-0.7 and HbF ~15% 4 months post-transplant. These data suggest that shmiBCL11A transduction results in transient HbF induction in gene-modified erythroid cells, while thEpoR-based selective advantage allows for sustained HbF induction with shmiBCL11A. In summary, we developed erythroid-specific thEpoR-shmiBCL11A expressing vectors, enhancing HbF induction in gene-modified erythroid cells in xenograft mice and rhesus macaques. While further in vivo studies are desirable, the use of thEpoR appears to provide a selective advantage for gene-modified erythroid cells in gene therapy strategies for hemoglobin disorders. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 93 (8) ◽  
pp. 2525-2532 ◽  
Author(s):  
Xingwei Sui ◽  
Kohichiro Tsuji ◽  
Yasuhiro Ebihara ◽  
Ryuhei Tanaka ◽  
Kenji Muraoka ◽  
...  

Abstract We have recently shown that stimulation of glycoprotein (gp) 130, the membrane-anchored signal transducing receptor component of IL-6, by a complex of human soluble interleukin-6 receptor (sIL-6R) and IL-6 (sIL-6R/IL-6), potently stimulates the ex vivo expansion as well as erythropoiesis of human stem/progenitor cells in the presence of stem cell factor (SCF). Here we show that sIL-6R dose-dependently enhanced the generation of megakaryocytes (Mks) (IIbIIIa-positive cells) from human CD34+ cells in serum-free suspension culture supplemented with IL-6 and SCF. The sIL-6R/IL-6 complex also synergistically acted with IL-3 and thrombopoietin (TPO) on the generation of Mks from CD34+ cells, whereas the synergy of IL-6 alone with TPO was barely detectable. Accordingly, the addition of sIL-6R to the combination of SCF + IL-6 also supported a substantial number of Mk colonies from CD34+ cells in serum-free methylcellulose culture, whereas SCF + IL-6 in the absence of sIL-6R rarely induced Mk colonies. The addition of monoclonal antibodies against gp130 to the suspension and clonal cultures completely abrogated the megakaryopoiesis induced by sIL-6R/IL-6 in the presence of SCF, whereas an anti-TPO antibody did not, indicating that the observed megakaryopoiesis by sIL-6R/IL-6 is a response to gp130 signaling and independent of TPO. Furthermore, human CD34+ cells were subfractionated into two populations of IL-6R–negative (CD34+ IL-6R−) and IL-6R–positive (CD34+ IL-6R+) cells by fluorescence-activated cell sorting. The CD34+IL-6R− cells produced a number of Mks as well as Mk colonies in cultures supplemented with sIL-6R/IL-6 or TPO in the presence of SCF. In contrast, CD34+ IL-6R+cells generated much less Mks and lacked Mk colony forming activity under the same conditions. Collectively, the present results indicate that most of the human Mk progenitors do not express IL-6R, and that sIL-6R confers the responsiveness of human Mk progenitors to IL-6. Together with the presence of functional sIL-6R in human serum and relative unresponsiveness of human Mk progenitors to IL-6 in vitro, current results suggest that the role of IL-6 may be mainly mediated by sIL-6R, and that the gp130 signaling initiated by the sIL-6R/ IL-6 complex is involved in human megakaryopoiesis in vivo.


Blood ◽  
1999 ◽  
Vol 93 (8) ◽  
pp. 2525-2532 ◽  
Author(s):  
Xingwei Sui ◽  
Kohichiro Tsuji ◽  
Yasuhiro Ebihara ◽  
Ryuhei Tanaka ◽  
Kenji Muraoka ◽  
...  

We have recently shown that stimulation of glycoprotein (gp) 130, the membrane-anchored signal transducing receptor component of IL-6, by a complex of human soluble interleukin-6 receptor (sIL-6R) and IL-6 (sIL-6R/IL-6), potently stimulates the ex vivo expansion as well as erythropoiesis of human stem/progenitor cells in the presence of stem cell factor (SCF). Here we show that sIL-6R dose-dependently enhanced the generation of megakaryocytes (Mks) (IIbIIIa-positive cells) from human CD34+ cells in serum-free suspension culture supplemented with IL-6 and SCF. The sIL-6R/IL-6 complex also synergistically acted with IL-3 and thrombopoietin (TPO) on the generation of Mks from CD34+ cells, whereas the synergy of IL-6 alone with TPO was barely detectable. Accordingly, the addition of sIL-6R to the combination of SCF + IL-6 also supported a substantial number of Mk colonies from CD34+ cells in serum-free methylcellulose culture, whereas SCF + IL-6 in the absence of sIL-6R rarely induced Mk colonies. The addition of monoclonal antibodies against gp130 to the suspension and clonal cultures completely abrogated the megakaryopoiesis induced by sIL-6R/IL-6 in the presence of SCF, whereas an anti-TPO antibody did not, indicating that the observed megakaryopoiesis by sIL-6R/IL-6 is a response to gp130 signaling and independent of TPO. Furthermore, human CD34+ cells were subfractionated into two populations of IL-6R–negative (CD34+ IL-6R−) and IL-6R–positive (CD34+ IL-6R+) cells by fluorescence-activated cell sorting. The CD34+IL-6R− cells produced a number of Mks as well as Mk colonies in cultures supplemented with sIL-6R/IL-6 or TPO in the presence of SCF. In contrast, CD34+ IL-6R+cells generated much less Mks and lacked Mk colony forming activity under the same conditions. Collectively, the present results indicate that most of the human Mk progenitors do not express IL-6R, and that sIL-6R confers the responsiveness of human Mk progenitors to IL-6. Together with the presence of functional sIL-6R in human serum and relative unresponsiveness of human Mk progenitors to IL-6 in vitro, current results suggest that the role of IL-6 may be mainly mediated by sIL-6R, and that the gp130 signaling initiated by the sIL-6R/ IL-6 complex is involved in human megakaryopoiesis in vivo.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2813-2820 ◽  
Author(s):  
Lisa Gallacher ◽  
Barbara Murdoch ◽  
Dongmei M. Wu ◽  
Francis N. Karanu ◽  
Mike Keeney ◽  
...  

Recent evidence indicates that human hematopoietic stem cell properties can be found among cells lacking CD34 and lineage commitment markers (CD34−Lin−). A major barrier in the further characterization of human CD34− stem cells is the inability to detect this population using in vitro assays because these cells only demonstrate hematopoietic activity in vivo. Using cell surface markers AC133 and CD7, subfractions were isolated within CD34−CD38−Lin− and CD34+CD38−Lin− cells derived from human cord blood. Although the majority of CD34−CD38−Lin− cells lack AC133 and express CD7, an extremely rare population of AC133+CD7− cells was identified at a frequency of 0.2%. Surprisingly, these AC133+CD7− cells were highly enriched for progenitor activity at a frequency equivalent to purified fractions of CD34+ stem cells, and they were the only subset among the CD34−CD38−Lin− population capable of giving rise to CD34+ cells in defined liquid cultures. Human cells were detected in the bone marrow of non-obese/severe combined immunodeficiency (NOD/SCID) mice 8 weeks after transplantation of ex vivo–cultured AC133+CD7− cells isolated from the CD34−CD38−Lin− population, whereas 400-fold greater numbers of the AC133−CD7− subset had no engraftment ability. These studies provide novel insights into the hierarchical relationship of the human stem cell compartment by identifying a rare population of primitive human CD34− cells that are detectable after transplantation in vivo, enriched for in vitro clonogenic capacity, and capable of differentiation into CD34+ cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4206-4206 ◽  
Author(s):  
M. Jarsch ◽  
M. Brandt ◽  
M. Kubbies ◽  
A. Haselbeck

Abstract Continuous Erythropoietin Receptor Activator (C.E.R.A.), an innovative erythropoietic agent with unique receptor activity, is currently in development to provide correction of anemia and stable maintenance of hemoglobin (Hb) levels at extended administration intervals up to once monthly in patients with all stages of chronic kidney disease (CKD), and is also in development for the treatment of chemotherapy-induced anemia. In vitro studies show that C.E.R.A. has a 45-fold lower affinity for the EPO receptor than epoetin beta, due mainly to a reduced association rate. To further investigate the in vitro activity of C.E.R.A., two cell stimulation studies were undertaken. Study 1 evaluated an assay for the analysis of the molecular mechanism of C.E.R.A.- and epoetin beta-mediated cell activation. UT-7 cells were activated with C.E.R.A. or epoetin beta for 72 h or 96 h, followed by WST (tetrazolium salt) staining and spectrophotometric detection. UT-7 is a human myeloid leukemia cell line expressing the EPO receptor, and has growth dependency on EPO if no other growth factors are present. Results showed that the EC50 (concentration giving half maximal stimulation) value was approximately 10-fold higher for C.E.R.A. (range 300–400 pM) than for epoetin beta (30–60 pM). Maximal activation of UT-7 cells was achieved at C.E.R.A. 1000–2000 pM and epoetin beta 100–200 pM, but the maximal stimulation of cells was similar for both agents. Study 2 investigated the effects of C.E.R.A. and epoetin beta on stimulation of the proliferation and differentiation of human CD34+ cells. Human CD34+ stem cells from cord blood and bone marrow were cultivated with C.E.R.A. or epoetin beta for 8–14 days. After labeling, using fluorescence-tagged antibodies to proteins specific for erythroid cells (glycophorin A) and other blood cell types (CD13, CD14, CD16, CD41, CD42b, and CD61), cells were analyzed using three-color flow cytometry with a FACScan instrument (Becton Dickinson, CA). The maximal number of glycophorin A positive cells at plateau phase was used for EC50 calculation. Following stimulation of CD34+ cells, glycophorin A+ cells increased to a similar level with C.E.R.A. and epoetin beta. This stimulation was specific for erythroid precursors since the differentiation of white blood cells and megakaryocytes was not affected by C.E.R.A. or epoetin beta. Notably, mean EC50 values were 43.4-fold higher with C.E.R.A. (2.807 nM) than with epoetin beta (0.076 nM). In conclusion, C.E.R.A. and epoetin beta activate UT-7 cells and induce differentiation and expansion of CD34+ cells. These studies provide further evidence that C.E.R.A. has different EPO receptor binding properties compared with epoetin beta and demonstrate its specificity for the red blood cell line. Preclinical studies have shown that these properties translate into more continuous stimulation of erythropoiesis in vivo compared with epoetin beta and Phase III data indicate that C.E.R.A. achieved and maintained stable Hb levels in all patients with CKD.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1999-1999
Author(s):  
Annie L. Oh ◽  
Dolores Mahmud ◽  
Benedetta Nicolini ◽  
Nadim Mahmud ◽  
Elisa Bonetti ◽  
...  

Abstract Our previous studies have shown the ability of human CD34+ cells to stimulate T cell alloproliferative responses in-vitro. Here, we investigated anti-CD34 T cell alloreactivity in-vivo by co-transplanting human CD34+ cells and allogeneic T cells of an incompatible individual into NSG mice. Human CD34+ cells (2x105/animal) were transplanted with allogeneic T cells at different ratios ranging from 1:50 to 1:0.5, or without T cells as a control. No xenogeneic GVHD was detected at 1:1 CD34:T cell ratio. Engraftment of human CD45+ (huCD45+) cells in mice marrow and spleen was analyzed by flow cytometry. Marrow engraftment of huCD45+ cells at 4 or 8 weeks was significantly decreased in mice transplanted with T cells compared to control mice that did not receive T cells. More importantly, transplantation of T cells at CD34:T cell ratios from 1:50 to 1:0.5 resulted in stem cell rejection since >98% huCD45+ cells detected were CD3+. In mice with stem cell rejection, human T cells had a normal CD4:CD8 ratio and CD4+ cells were mostly CD45RA+. The kinetics of human cell engraftment in the bone marrow and spleen was then analyzed in mice transplanted with CD34+ and allogeneic T cells at 1:1 ratio and sacrificed at 1, 2, or 4 weeks. At 2 weeks post transplant, the bone marrow showed CD34-derived myeloid cells, whereas the spleen showed only allo-T cells. At 4 weeks, all myeloid cells had been rejected and only T cells were detected both in the bone marrow and spleen. Based on our previous in-vitro studies showing that T cell alloreactivity against CD34+ cells is mainly due to B7:CD28 costimulatory activation, we injected the mice with CTLA4-Ig (Abatacept, Bristol Myers Squibb, New York, NY) from d-1 to d+28 post transplantation of CD34+ and allogeneic T cells. Treatment of mice with CTLA4-Ig prevented rejection and allowed CD34+ cells to fully engraft the marrow of NSG mice at 4 weeks with an overall 13± 7% engraftment of huCD45+ marrow cells (n=5) which included: 53±9% CD33+ cells, 22±3% CD14+ monocytes, 7±2% CD1c myeloid dendritic cells, and 4±1% CD34+ cells, while CD19+ B cells were only 3±1% and CD3+ T cells were 0.5±1%. We hypothesize that CTLA4-Ig may induce the apoptotic deletion of alloreactive T cells early in the post transplant period although we could not detect T cells in the spleen as early as 7 or 10 days after transplant. Here we demonstrate that costimulatory blockade with CTLA4-Ig at the time of transplant of human CD34+ cells and incompatible allogeneic T cells can prevent T cell mediated rejection. We also show that the NSG model can be utilized to test immunotherapy strategies aimed at engrafting human stem cells across HLA barriers in-vivo. These results will prompt the design of future clinical trials of CD34+ cell transplantation for patients with severe non-malignant disorders, such as sickle cell anemia, thalassemia, immunodeficiencies or aplastic anemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 93 (7) ◽  
pp. 2244-2252 ◽  
Author(s):  
Jean-François Arrighi ◽  
Conrad Hauser ◽  
Bernard Chapuis ◽  
Rudolf H. Zubler ◽  
Vincent Kindler

Current in vitro culture systems allow the generation of human dendritic cells (DCs), but the output of mature cells remains modest. This contrasts with the extensive amplification of hematopoietic progenitors achieved when culturing CD34+ cells with FLT3-ligand and thrombopoietin. To test whether such cultures contained DC precursors, CD34+ cord blood cells were incubated with the above cytokines, inducing on the mean a 250-fold and a 16,600-fold increase in total cell number after 4 and 8 weeks, respectively. The addition of stem cell factor induced a further fivefold increase in proliferation. The majority of the cells produced were CD34−CD1a− CD14+(p14+) and CD34−CD1a−CD14−(p14−) and did not display the morphology, surface markers, or allostimulatory capacity of DC. When cultured with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4), both subsets differentiated without further proliferation into immature (CD1a+, CD14−, CD83−) macropinocytic DC. Mature (CD1a+, CD14−, CD83+) DCs with high allostimulatory activity were generated if such cultures were supplemented with tumor necrosis factor- (TNF). In addition, p14− cells generated CD14+ cells with GM-CSF and TNF, which in turn, differentiated into DC when exposed to GM-CSF and IL-4. Similar results were obtained with frozen DC precursors and also when using pooled human serum AB+ instead of bovine serum, emphasizing that this system using CD34+ cells may improve future prospects for immunotherapy.


Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4384-4393 ◽  
Author(s):  
André Gothot ◽  
Robert Pyatt ◽  
Jon McMahel ◽  
Susan Rice ◽  
Edward F. Srour

Using simultaneous Hoechst 33342 (Hst) and Pyronin Y (PY) staining for determination of DNA and RNA content, respectively, human CD34+ cells were isolated in subcompartments of the G0 /G1 phase of the cell cycle by flow cytometric cell sorting. In both bone marrow (BM) and mobilized peripheral blood (MPB) CD34+ cells, primitive long-term hematopoietic culture-initiating cell (LTHC-IC) activity was higher in CD34+ cells isolated in G0 (G0CD34+ cells) than in those residing in G1 (G1CD34+ cells). However, as MPB CD34+ cells displayed a more homogeneous cell-cycle status within the G0 /G1 phase and a relative absence of cells in late G1 , DNA/RNA fractionation was less effective in segregating LTHC-IC in MPB than in BM. BM CD34+ cells belonging to four subcompartments of increasing RNA content within the G0 /G1 phase were evaluated in functional assays. The persistence of CD34 expression in suspension culture was inversely correlated with the initial RNA content of test cells. Multipotential progenitors were present in G0 or early G1 subcompartments, while lineage-restricted granulomonocytic progenitors were more abundant in late G1 . In vitro hematopoiesis was maintained for up to 6 weeks with G0CD34+ cells, whereas production of clonogenic progenitors was more limited in cultures initiated with G1CD34+ cells. To test the hypothesis that primitive LTHC-ICs would reenter a state of relative quiescence after in vitro division, BM CD34+ cells proliferating in ex vivo cultures were identified from their quiescent counterparts by a relative loss of membrane intercalating dye PKH2, and were further fractionated with Hst and PY. The same functional hierarchy was documented within the PKH2dim population whereby LTHC-IC frequency was higher for CD34+ cells reselected in G0 after in vitro division than for CD34+ cells reisolated in G1 or in S/G2 + M. However, the highest LTHC-IC frequency was found in quiescent PKH2bright CD34+ cells. Together, these results support the concept that cells with distinct hematopoietic capabilities follow different pathways during the G0 /G1 phase of the cell cycle both in vivo and during ex vivo culture.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1730-1730
Author(s):  
Lara Rossi ◽  
Rossella Manfredini ◽  
Francesco Bertolini ◽  
Davide Ferrari ◽  
Miriam Fogli ◽  
...  

Abstract Regulatory mechanisms governing homing and engraftment of hematopoietic stem cells (HSCs) involve a complex interplay between chemokines, cytokines, growth factors and adhesion molecules in the intricate architecture of bone marrow (BM) microenvironment. HSCs express P2Y and P2X receptors for extracellular nucleotides, which activation by ATP and UTP has been recently demonstrated (Lemoli et al. Blood. 2004) to produce potent stimulatory effects on HSCs. Moreover extracellular nucleotides are emerging as key factors of flogosis phenomena and related chemotactic responses of several cell types, such as dendritic cells, monocytes and endothelial cells. In this study we investigated the biologic activity of extracellular ATP and UTP and their capacity to cooperatively promote SDF-1 (stromal cell-derived factor-1)-stimulated cell chemotaxis. Low concentrations of UTP (10uM) significantly improved, in vitro, HSCs migration. Moreover, UTP inhibits CXCR4 down-regulation of migrating CD34+ cells and increased cell adhesion to fibronectin filaments. Furthermore, in vivo competitive repopulation assays showed that preincubation with UTP significantly improved the homing efficiency of human CD34+ HSCs in nonobese diabetic/severe combined immunodeficient mice. Inhibition assays with Pertussis Toxin from B. Pertussis blocked SDF-1- and UTP-dependent chemotactic responses, suggesting that Gαi proteins may provide a converging signal for CXCR4- and P2Y-activated transduction pathways. In addition, gene expression profiling of UTP-treated CD34+ cells and subsequent in vitro inhibition assays with Toxin B from C. Difficile suggest that RhoGTPase Rac2 and his downstream effectors ROCK1 and ROCK2 are involved in the UTP-promoted, SDF-1-dependent HSCs migration. Taken together, our data suggest that UTP may physiologically modulate HSC migration and homing to the BM, in concert with the chemotactic peptide SDF-1, via the activation of converging signaling transduction pathways between CXCR4 and P2Y receptors, involving Gαi proteins and RhoGTPases.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3374-3374
Author(s):  
Neeta Shirvaikar ◽  
Ali Jalili ◽  
Mariusz Z. Ratajczak ◽  
Anna Janowska-Wieczorek

Abstract Thrombin, an important serine protease, not only plays a pivotal role in platelet aggregation and coagulation, but also through activation of its receptor, seven transmembrane, G-protein-coupled receptor PAR-1, elicits numerous cellular responses in platelets and endothelial cells such as induction of adhesion molecules, production of chemokines, activation of matrix metalloproteinase (MMP)-2, cytoskeletal reorganization and migration. Thrombin is also one of the inflammatory molecules elevated during G-CSF mobilization of hematopoietic stem/progenitor cells (HSPC) and their collection by leukapheresis. We recently reported that components of leukapheresis products including thrombin enhance in vitro chemotaxis of CD34+ cells towards an SDF-1 gradient and in vivo homing to bone marrow (BM) niches in a murine model (Blood2005; 105:40). In this study we investigated whether thrombin enhances the homing-related responses of human HSPC (CD34+ cells) through MMPs, especially membrane-type (MT)1-MMP which is known to be localized on the leading edge of migrating cells and both activates latent proMMPs (MMP-2, -9) and itself has strong pericellular proteolytic activity. We found that stimulation of CD34+ cells with thrombin upregulates mRNA for MT1-MMP and MMP-9 as well as MT1-MMP protein expression (Western blot, flow cytometry) and proMMP-2 and proMMP-9 secretion (zymography). Thrombin was also found to (i) prime trans-Matrigel chemoinvasion of CD34+ cells towards a low SDF-1 gradient (20 ng/mL), which was inhibited by epigallocatechin-3-gallate, a potent inhibitor of MT1-MMP, and (ii) activate MMP-2 in of co-cultures of CD34+ cells with stromal cells (BM fibroblasts and HUVEC) which secrete proMMP-2. We also found that SDF-1 upregulates mRNA and protein expression of MT1-MMP. Moreover, using confocal microscopy we demonstrate for the first time that in CD34+ cells, PAR-1, like CXCR4, is localized in the GM1 fraction of lipid rafts and stimulation of these cells with thrombin as well as SDF-1 increases incorporation of MT1-MMP into membrane lipid rafts. Furthermore, disruption of lipid raft formation by the cholesterol-depleting agent methyl-b-cyclodextrin inhibits MT1-MMP incorporation into membrane lipid rafts and also trans-Matrigel chemoinvasion of CD34+ cells towards SDF-1. Thus we conclude that thrombin, through PAR-1 signalling and the SDF-1-CXCR4 axis, upregulates the incorporation of MT1-MMP into membrane lipid rafts and the interaction of these axes enhances the homing-related responses of HSPC towards SDF-1.


Sign in / Sign up

Export Citation Format

Share Document