scholarly journals Metabolism of Tac (IL2Ralpha): physiology of cell surface shedding and renal catabolism, and suppression of catabolism by antibody binding.

1996 ◽  
Vol 183 (4) ◽  
pp. 1587-1602 ◽  
Author(s):  
R P Junghans ◽  
T A Waldmann

The interleukin 2 receptor alpha (IL2Ralpha; CD25; Tac) is the prototypic model for soluble receptor studies. It exists in vivo as a transmembrane complete molecule (TM-Tac) on cell surfaces and as a truncated soluble form (sTac; sIL2R alpha). sTac has been used as a serum marker of T cell activation in immune disorders and of tumor burden in Tac-expressing malignancies. In vivo, serum levels of all soluble proteins depend on the balance between production and catabolism, but little is known about the metabolic features of this class of molecules. We have developed a model for Tac metabolism that incorporates new insights in its production and catabolism. Tac was shed from the surface of malignant and activated human T cells with a model half-life (t1/2) of 2-6h, but which was prolonged under certain circumstances. The rate of shedding is first order overall and nonsaturable over a two order of magnitude range of substrate (TM-Tac) expression. Once shed from cells Tac is subject to catabolic activities in the host. In vivo studies in mice showed that 90% of Tac was catabolized by the kidney with a t1/2 of 1 h and a filtration fraction of 0.11 relative to creatinine. The remaining 10% of catabolism was mediated by other tissues with a t1/2 of 10 h. Approximately 1-3% of sTac is excreted intact as proteinuria with the remaining 97-99% catabolized to amino acids. Antibody to the receptor induced a marked delay in sTac catabolism by preventing filtration of the smaller protein through the renal glomerulus and additionally suppressing other nonrenal catabolic mechanisms. A discrepancy between the catabolic rats for Tac and anti-Tac in the same complex was interpreted as a previously unrecognized differential catabolic mechanism, suggesting features of the Brambell hypothesis and immunoglobulin G transport and catabolism, in which the antigen-in-complex in intracellular vesicles is relatively less protected from catabolism than the associated antibody. In light of the pivotal role played by the kidney in sTac catabolism and the impact of administered antibody, the serum concentration of Tac in the settings of renal dysfunction or antibody therapy is not a suitable surrogate of activated T cells or of the body burden of tumor. These results provide parameters for assessing soluble receptor-ligand interactions generally.

2006 ◽  
Vol 74 (7) ◽  
pp. 3817-3824 ◽  
Author(s):  
Karen L. Wozniak ◽  
Jatin M. Vyas ◽  
Stuart M. Levitz

ABSTRACT Dendritic cells (DC) have been shown to phagocytose and kill Cryptococcus neoformans in vitro and are believed to be important for inducing protective immunity against this organism. Exposure to C. neoformans occurs mainly by inhalation, and in this study we examined the in vivo interactions of C. neoformans with DC in the lung. Fluorescently labeled live C. neoformans and heat-killed C. neoformans were administered intranasally to C57BL/6 mice. At specific times postinoculation, mice were sacrificed, and lungs were removed. Single-cell suspensions of lung cells were prepared, stained, and analyzed by microscopy and flow cytometry. Within 2 h postinoculation, fluorescently labeled C. neoformans had been internalized by DC, macrophages, and neutrophils in the mouse lung. Additionally, lung DC from mice infected for 7 days showed increased expression of the maturation markers CD80, CD86, and major histocompatibility complex class II. Finally, ex vivo incubation of lung DC from infected mice with Cryptococcus-specific T cells resulted in increased interleukin-2 production compared to the production by DC from naïve mice, suggesting that there was antigen-specific T-cell activation. This study demonstrated that DC in the lung are capable of phagocytosing Cryptococcus in vivo and presenting antigen to C. neoformans-specific T cells ex vivo, suggesting that these cells have roles in innate and adaptive pulmonary defenses against cryptococcosis.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A217-A217
Author(s):  
Andy Tsun ◽  
Zhiyuan Li ◽  
Zhenqing Zhang ◽  
Weifeng Huang ◽  
Shaogang Peng ◽  
...  

BackgroundCancer immunotherapy has achieved unprecedented success in the complete remission of hematological tumors. However, serious or even fatal clinical side-effects have been associated with CAR-T therapies to solid tumors, which mainly include cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), macrophage activation syndrome, etc. Furthermore, CAR-T therapies have not yet demonstrated significant clinical efficacy for the treatment of solid tumors. Here, we present a novel T cell therapeutic platform: a Chimeric CD3e fusion protein and anti-CD3-based bispecific T cell activating element (BiTA) engineered T (CAB-T) cells, which target tumor antigens via the secretion of BiTAs that act independently of MHC interactions. Upon BiTA secretion, CAB-T cells can simultaneously achieve anti-tumor cytotoxic effects from the CAB-T cells and simultaneously activate bystander T cells.MethodsCAB-T cells were generated by co-expressing a chimeric CD3e fusion protein and an anti-CD3-based bispecific T cell activating element. The chimeric CD3e contains the extracellular domain of CD3e, a CD8 transmembrane domain, 4-1BB costimulatory domain, CD3z T cell activation domain and a FLAG tag, while the BiTA element includes a tumor antigen targeting domain fused with an anti-CD3 scFv domain and a 6x His-tag. CAR-T cells were generated as a control. Cytokine release activity, T cell activation and exhaustion markers, T cell killing activity and T cell differentiation stages were analysed. We also tested their tumor growth inhibition activity, peripheral and tumor tissue distribution, and their safety-profiles in humanized mouse models.ResultsCAB-T cells have similar or better in vitro killing activity compared with their CAR-T counterparts, with lower levels of cytokine release (IL-2 and IFNγ). CAB-T cells also showed lower levels of exhaustion markers (PD-1, LAG-3 and TIM-3), and higher ratios of naive/Tscm and Tcm T cell populations, after co-culture with their target tumor cells (48h). In in vivo studies, CAIX CAB-T and HER2 CAB-T showed superior anti-tumor efficacy and tumor tissue infiltration activity over their corresponding CAR-T cells. For CLDN18.2 CAB-T cells, similar in vivo anti-tumor efficacy was observed compared to CAR-T after T cell infusion, but blood glucose reduction and animal mortality was observed in the mice administered with CAR-T cells.ConclusionsThe advantages of CAB-T in in vitro and in vivo studies may result from TCR signal activation of both the engineered CAB-T cells and the non-engineered bystander T cells via cross-bridging by the secreted BiTA molecules, thus offering superior anti-tumor efficacy with a potential better safety-profile compared to conventional CAR-T platforms.


1994 ◽  
Vol 180 (3) ◽  
pp. 1159-1164 ◽  
Author(s):  
D Unutmaz ◽  
P Pileri ◽  
S Abrignani

We investigated whether human resting T cells could be activated to proliferate and display effector function in the absence of T cell receptor occupancy. We report that combination of interleukin 2 (IL-2), tumor necrosis factor alpha, and IL-6 activated highly purified naive (CD45RA+) and memory (CD45RO+) resting CD4+ T cells to proliferate. Under this condition, memory resting T cells could also display effector function as measured by lymphokine synthesis and help for immunoglobulin production by B cells. This novel Ag-independent pathway of T cell activation may play an important role in vivo in recruiting effector T cells at the site of immune response and in maintaining the clonal size of memory T cells in the absence of antigenic stimulation. Moreover, cytokines can induce proliferation of naive T cells without switch to memory phenotype and this may help the maintenance of the peripheral pool of naive T cells.


2020 ◽  
Vol 8 (2) ◽  
pp. e001521
Author(s):  
Javier Arranz-Nicolás ◽  
Miguel Martin-Salgado ◽  
Cristina Rodríguez-Rodríguez ◽  
Rosa Liébana ◽  
Maria C Moreno-Ortiz ◽  
...  

BackgroundThe inhibitory functions triggered by the programmed cell death-1 (PD-1) receptor following binding to its ligand (PD-L1) protect healthy organs from cytotoxic T cells, and neutralize antitumor T cell attack. Antibody-based therapies to block PD-1/PD-L1 interaction have yielded notable results, but most patients eventually develop resistance. This failure is attributed to CD8+ T cells achieving hyporesponsive states from which recovery is hardly feasible. Dysfunctional T cell phenotypes are favored by a sustained imbalance in the diacylglycerol (DAG)- and Ca2+-regulated transcriptional programs. In mice, DAG kinase ζ (DGKζ) facilitates DAG consumption, limiting T cell activation and cytotoxic T cell responses. DGKζ deficiency facilitates tumor rejection in mice without apparent adverse autoimmune effects. Despite its therapeutic potential, little is known about DGKζ function in human T cells, and no known inhibitors target this isoform.MethodsWe used a human triple parameter reporter cell line to examine the consequences of DGKζ depletion on the transcriptional restriction imposed by PD-1 ligation. We studied the effect of DGKζ deficiency on PD-1 expression dynamics, as well as the impact of DGKζ absence on the in vivo growth of MC38 adenocarcinoma cells.ResultsWe demonstrate that DGKζ depletion enhances DAG-regulated transcriptional programs, promoting interleukin-2 production and partially counteracting PD-1 inhibitory functions. DGKζ loss results in limited PD-1 expression and enhanced expansion of cytotoxic CD8+ T cell populations. This is observed even in immunosuppressive milieus, and correlates with the reduced ability of MC38 adenocarcinoma cells to form tumors in DGKζ-deficient mice.ConclusionsOur results, which define a role for DGKζ in the control of PD-1 expression, confirm DGKζ potential as a therapeutic target as well as a biomarker of CD8+ T cell dysfunctional states.


Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2181-2190 ◽  
Author(s):  
Maria Paola Martelli ◽  
Huamao Lin ◽  
Weiguo Zhang ◽  
Lawrence E. Samelson ◽  
Barbara E. Bierer

Abstract Activation of T cells can be initiated through cell surface molecules in addition to the T-cell receptor-CD3 (TCR-CD3) complex. In human T cells, ligation of the CD2 molecule by mitogenic pairs of anti-CD2 monoclonal antibodies activates T cells via biochemical signaling pathways similar but not identical to those elicited on TCR engagement. This study describes a key role for the p36/38 membrane adapter protein linker for T cell activation (LAT) in CD2-mediated T-cell activation. Following ligation of CD2 on the surface of the Jurkat T-cell line and human purified T cells, LAT was tyrosine phosphorylated and shown to associate in vivo with a number of other tyrosine phosphorylated proteins including PLCγ-1, Grb-2, and SLP-76. Using Jurkat cell lines deficient in ZAP70/Syk (P116) or LAT (ANJ3) expression, CD2-dependent PLCγ-1 and SLP-76 tyrosine phosphorylation required expression both of ZAP70 or Syk and of LAT. As predicted, the absence of either LAT or ZAP70/Syk kinases correlated with a defect in the induction of nuclear factor of activated T cells (NFAT) transcriptional activity, activation of the interleukin-2 promoter, and ERK phosphorylation following CD2 stimulation. These data suggest that LAT is an adapter protein important for the regulation of CD2-mediated T-cell activation.


Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2181-2190 ◽  
Author(s):  
Maria Paola Martelli ◽  
Huamao Lin ◽  
Weiguo Zhang ◽  
Lawrence E. Samelson ◽  
Barbara E. Bierer

Activation of T cells can be initiated through cell surface molecules in addition to the T-cell receptor-CD3 (TCR-CD3) complex. In human T cells, ligation of the CD2 molecule by mitogenic pairs of anti-CD2 monoclonal antibodies activates T cells via biochemical signaling pathways similar but not identical to those elicited on TCR engagement. This study describes a key role for the p36/38 membrane adapter protein linker for T cell activation (LAT) in CD2-mediated T-cell activation. Following ligation of CD2 on the surface of the Jurkat T-cell line and human purified T cells, LAT was tyrosine phosphorylated and shown to associate in vivo with a number of other tyrosine phosphorylated proteins including PLCγ-1, Grb-2, and SLP-76. Using Jurkat cell lines deficient in ZAP70/Syk (P116) or LAT (ANJ3) expression, CD2-dependent PLCγ-1 and SLP-76 tyrosine phosphorylation required expression both of ZAP70 or Syk and of LAT. As predicted, the absence of either LAT or ZAP70/Syk kinases correlated with a defect in the induction of nuclear factor of activated T cells (NFAT) transcriptional activity, activation of the interleukin-2 promoter, and ERK phosphorylation following CD2 stimulation. These data suggest that LAT is an adapter protein important for the regulation of CD2-mediated T-cell activation.


2002 ◽  
Vol 195 (12) ◽  
pp. 1613-1624 ◽  
Author(s):  
Stefanie Scheu ◽  
Judith Alferink ◽  
Tobias Pötzel ◽  
Winfried Barchet ◽  
Ulrich Kalinke ◽  
...  

The recently described tumor necrosis factor (TNF) family member LIGHT (herpes virus entry mediator [HVEM]-L/TNFSF14), a ligand for the lymphotoxin (LT)β receptor, HVEM, and DcR3, was inactivated in the mouse. In contrast to mice deficient in any other member of the LT core family, LIGHT−/− mice develop intact lymphoid organs. Interestingly, a lower percentage of LIGHT−/−LTβ−/− animals contain mesenteric lymph nodes as compared with LTβ−/− mice, whereas the splenic microarchitecture of LIGHT−/−LTβ−/− and LTβ−/− mice shows a comparable state of disruption. This suggests the existance of an additional undiscovered ligand for the LTβ receptor (LTβR) or a weak LTα3–LTβR interaction in vivo involved in the formation of secondary lymphoid organs. LIGHT acts synergistically with CD28 in skin allograft rejection in vivo. The underlying mechanism was identified in in vitro allogeneic MLR studies, showing a reduced cytotoxic T lymphocyte activity and cytokine production. Detailed analyses revealed that proliferative responses specifically of CD8+ T cells are impaired and interleukin 2 secretion of CD4+ T cells is defective in the absence of LIGHT. Furthermore, a reduced 3[H]-thymidine incorporation after T cell receptor stimulation was observed. This for the first time provides in vivo evidence for a cooperative role for LIGHT and LTβ in lymphoid organogenesis and indicates important costimulatory functions for LIGHT in T cell activation.


2019 ◽  
Author(s):  
Simone Nüssing ◽  
Imran G. House ◽  
Conor J. Kearney ◽  
Stephin J. Vervoort ◽  
Paul A. Beavis ◽  
...  

AbstractCRISPR/Cas9 technologies have revolutionised our understanding of gene function in complex biological settings, including T cell immunology. Current CRISPR-mediated gene deletion strategies in T cells require in vitro stimulation or culture that can both preclude studies of gene function within unmanipulated naïve T cells and can alter subsequent differentiation. Here we demonstrate highly efficient gene deletion within uncultured primary naïve murine CD8+ T cells by electroporation of recombinant Cas9/sgRNA ribonucleoprotein immediately prior to in vivo adoptive transfer. Using this approach, we generated single and double gene knock-out cells within multiple mouse infection models. Strikingly, gene deletion occurred even when the transferred cells were left in a naïve state, suggesting that gene deletion occurs independent of T cell activation. This protocol thus expands CRISPR-based probing of gene function beyond models of robust T cell activation, to encompass both naïve T cell homeostasis and models of weak activation, such as tolerance and tumour models.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 152
Author(s):  
Wenjie Gong ◽  
Lei Wang ◽  
Sophia Stock ◽  
Ming Ni ◽  
Maria-Luisa Schubert ◽  
...  

NY-ESO-1-specific T cells have shown promising activity in the treatment of soft tissue sarcoma (STS). However, standardized protocols for their generation are limited. Particularly, cost-effectiveness considerations of cell production protocols are of importance for conducting clinical studies. In this study, two different NY-ESO-1-specific T cell production protocols were compared. Major differences between protocols 1 and 2 include culture medium, interleukin-2 and retronectin concentrations, T cell activation strategy, and the transduction process. NY-ESO-1-specific T cells generated according to the two protocols were investigated for differences in cell viability, transduction efficiency, T cell expansion, immunophenotype as well as functionality. NY-ESO-1-specific T cells showed similar viability and transduction efficiency between both protocols. Protocol 1 generated higher absolute numbers of NY-ESO-1-specific T cells. However, there was no difference in absolute numbers of NY-ESO-1-specific T cell subsets with less-differentiated phenotypes accounting for efficient in vivo expansion and engraftment. Furthermore, cells generated according to protocol 1 displayed higher capacity of TNF-α generation, but lower cytotoxic capacities. Overall, both protocols provided functional NY-ESO-1-specific T cells. However, compared to protocol 1, protocol 2 is advantageous in terms of cost-effectiveness. Cell production protocols should be designed diligently to achieve a cost-effective cellular product for further clinical evaluation.


Sign in / Sign up

Export Citation Format

Share Document