scholarly journals Requirement of CD3 Complex–associated Signaling Functions for Expression of Rearranged T Cell Receptor β VDJ Genes in Early Thymic Development

1998 ◽  
Vol 188 (9) ◽  
pp. 1669-1678 ◽  
Author(s):  
Andreas Würch ◽  
Judit Biro ◽  
Alexandre J. Potocnik ◽  
Ingrid Falk ◽  
Horst Mossmann ◽  
...  

During αβ thymocyte development, the clonotypic αβ–T cell receptor (TCR) is preceded by sequentially expressed immature versions of the TCR–CD3 complex: the pre-TCR, containing a clonotypic TCR-β chain and invariant pre-Tα, is expressed on pre-T cells before rearrangement of the TCR-α locus. Moreover, clonotype-independent CD3 complexes (CIC) appear on pro-T cells before VDJ rearrangements of TCR-β genes. The pre-TCR is known to mediate TCR-β selection, the prerequisite for maturation of CD4−8− double negative (DN) thymocytes to the CD4+8+ double positive stage. A developmental function of CIC has so far not been delineated. In mice single deficient and double deficient for CD3ζ/η and/or p56lck, we observe a pronounced reduction in the proportions of CD25+ DN thymocytes that express intracellular TCR-β chains. TCR-β transcripts are reduced in parallel with TCR-β polypeptide chains whereas no reduction in TCR-β locus rearrangements could be detected. Wild-type levels of TCR-β transcripts and of cells expressing TCR-β polypeptide chains are induced by treatment with anti-CD3ε mAb. The data suggest that the initial expression of rearranged TCR-β VDJ genes in pro-T cell to pre-T cell progression is dependent on CD3 complex signaling, and thus define a putative developmental function for CIC.

1991 ◽  
Vol 174 (2) ◽  
pp. 417-424 ◽  
Author(s):  
T Abo ◽  
T Ohteki ◽  
S Seki ◽  
N Koyamada ◽  
Y Yoshikai ◽  
...  

We demonstrated in the present study that with bacterial stimulation, an increased number of alpha/beta T cells proliferated in the liver of mice and that even T cells bearing self-reactive T cell receptor (TCR) (or forbidden T cell clones), as estimated by anti-V beta monoclonal antibodies in conjunction with immunofluorescence tests, appeared in the liver and, to some extent, in the periphery. The majority (greater than 80%) of forbidden clones induced had double-negative CD4-8-phenotype. In a syngeneic mixed lymphocyte reaction, these T cells appear to be self-reactive. Such forbidden clones and normal T cells in the liver showed a two-peak pattern of TCR expression, which consisted of alpha/beta TCR dull and bright positive cells, as seen in the thymus. A systematic analysis of TCR staining patterns in the various organs was then carried out. T cells from not only the thymus but also the liver had the two-peak pattern of alpha/beta TCR, whereas all of the other peripheral lymphoid organs had a single-peak pattern of TCR. However, T cells in the liver were not comprised of double-positive CD4+8+ cells, which predominantly reside in the thymus. The present results therefore suggest that T cell proliferation in the liver might reflect a major extrathymic pathway for T cell differentiation and that this hepatic pathway has the ability to produce T cells bearing self-reactive TCR under bacterial stimulation, probably due to the lack of a double-positive stage for negative selection.


Blood ◽  
2005 ◽  
Vol 106 (4) ◽  
pp. 1296-1304 ◽  
Author(s):  
Ariadne L. Hager-Theodorides ◽  
Johannes T. Dessens ◽  
Susan V. Outram ◽  
Tessa Crompton

AbstractGlioblastoma 3 (Gli3) is a transcription factor involved in patterning and oncogenesis. Here, we demonstrate a role for Gli3 in thymocyte development. Gli3 is differentially expressed in fetal CD4–CD8– double-negative (DN) thymocytes and is most highly expressed at the CD44+ CD25– DN (DN1) and CD44–CD25– (DN4) stages of development but was not detected in adult thymocytes. Analysis of null mutants showed that Gli3 is involved at the transitions from DN1 to CD44+ CD25+ DN (DN2) cell and from DN to CD4+CD8+ double-positive (DP) cell. Gli3 is required for differentiation from DN to DP thymocyte, after pre–T-cell receptor (TCR) signaling but is not necessary for pre-TCR–induced proliferation or survival. The effect of Gli3 was dose dependent, suggesting its direct involvement in the transcriptional regulation of genes controlling T-cell differentiation during fetal development.


1993 ◽  
Vol 178 (6) ◽  
pp. 1867-1875 ◽  
Author(s):  
C N Levelt ◽  
R Carsetti ◽  
K Eichmann

Recent studies have shown that maturation of CD4-8- double negative (DN) thymocytes to the CD4+8+ double positive (DP) stage is dependent on expression of the T cell receptor (TCR)-beta polypeptide. The exact mechanism by which the TCR-beta chain regulates this maturation step remains unknown. Previous experiments had suggested that in the presence of some TCR+ thymocytes, additional DN thymocytes not expressing a TCR-beta chain may be recruited to mature to the DP stage. The recent demonstration of an immature TCR-beta-CD3 complex on early thymocytes lead to the alternative hypothesis that signal transduction through an immature TCR-CD3 complex may induce maturation to the DP stage. In the latter case, maturation to the DP stage would depend on the expression of TCR-beta-CD3 in the same cell. We examined these two hypotheses by studying the expression of the intra- and extracellular CD3 epsilon, CD3 zeta, and TCR-beta polypeptides in intrathymic subpopulations during embryogenesis. CD3 epsilon and CD3 zeta were expressed intracellularly 2 and 1 d, respectively, before intracellular expression of the TCR-beta chain, potentially allowing immediate surface expression of an immature TCR-beta-CD3 complex as soon as functional rearrangement of a TCR-beta gene locus has been accomplished. Calcium mobilization could be induced by stimulation with anti-CD3 epsilon mAb as soon as intracellular TCR-beta was detectable, suggesting that a functional TCR-beta-CD3 complex is indeed expressed on the surface of early thymocytes. From day 17 on, most cells were in the DP stage, and over 95% of the DP cells expressed on the TCR-beta chain intracellularly. At day 19 of gestation, extremely low concentrations of TCR-beta chain and CD3 epsilon were detectable on the cell surface of nearly all thymocytes previously thought to be TCR-CD3 negative. These findings strongly support the hypothesis that maturation to the DP stage depends on surface expression of and subsequent signal transduction through an immature TCR-beta-CD3 complex and suggest that maturation to the DP stage by recruitment, if it occurs at all, is of minor relevance.


1996 ◽  
Vol 184 (2) ◽  
pp. 519-530 ◽  
Author(s):  
A R Ramiro ◽  
C Trigueros ◽  
C Márquez ◽  
J L San Millán ◽  
M L Toribio

In murine T cell development, early thymocytes that productively rearrange the T cell receptor (TCR) beta locus are selected to continue maturation, before TCR alpha expression, by means of a pre-TCR alpha- (pT alpha-) TCR beta heterodimer (pre-TCR). The aim of this study was to identify equivalent stages in human thymocyte development. We show here that variable-diversity-joining region TCR beta rearrangement and the expression of full-length TCR beta transcripts have been initiated in some immature thymocytes at the TCR alpha/beta- CD4+CD8- stage, and become common in a downstream subset of TCR alpha/beta- CD4+CD8+ thymocytes that is highly enriched in large cycling cells. TCR beta chain expression was hardly detected in TCR alpha/beta- CD4+CD8- thymocytes, whereas cytoplasmic TCR beta chain was found in virtually all TCR alpha/beta- CD4+CD8+ blasts. In addition, a TCR beta complex distinct from the mature TCR alpha/beta heterodimer was immunoprecipitated only from the latter subset. cDNA derived from TCR alpha/beta- CD4+CD8+ blasts allowed us to identify and clone the gene encoding the human pT alpha chain, and to examine its expression at different stages of thymocyte development. Our results show that high pT alpha transcription occurs only in CD4+CD8- and CD4+CD8+ TCR alpha/beta- thymocytes, whereas it is weaker in earlier and later stages of development. Based on these results, we propose that the transition from TCR alpha/beta- CD4+CD8- to TCR alpha/beta- CD4+CD8+ thymocytes represents a critical developmental stage at which the successful expression of TCR beta promotes the clonal expansion and further maturation of human thymocytes, independent of TCR alpha.


2021 ◽  
Author(s):  
Delong Feng ◽  
Yanhong Chen ◽  
Ranran Dai ◽  
Shasha Bian ◽  
Wei Xue ◽  
...  

Abstract CD4+ and CD8+ double-positive (DP) thymocytes are at a crucial stage during the T cell development in the thymus. DP cells rearrange the T cell receptor gene Tcra to generate T cell receptors with TCRβ. Then DP cells differentiate into CD4 or CD8 single-positive (SP) thymocytes, Regulatory T cells, or invariant nature kill T cells (iNKT) according to the TCR signal. Chromatin organizer SATB1 is highly expressed in DP cells and plays an essential role in regulating Tcra rearrangement and differentiation of DP cells. Here we explored the mechanism of SATB1 orchestrating gene expression in DP cells. Single-cell RNA sequencing assay of SATB1-deficient thymocytes showed that the cell identity of DP thymocytes was changed, and the genes specifically highly expressed in DP cells were down-regulated. The super-enhancers regulate the expressions of the DP-specific genes, and the SATB1 deficiency reduced the super-enhancer activity. Hi-C data showed that interactions in super-enhancers and between super-enhancers and promoters decreased in SATB1 deficient thymocytes. We further explored the regulation mechanism of two SATB1-regulating genes, Ets2 and Bcl6, in DP cells and found that the knockout of the super-enhancers of these two genes impaired the development of DP cells. Our research reveals that SATB1 globally regulates super-enhancers of DP cells and promotes the establishment of DP cell identity, which helps understand the role of SATB1 in thymocyte development.


1998 ◽  
Vol 188 (8) ◽  
pp. 1401-1412 ◽  
Author(s):  
César Trigueros ◽  
Almudena R. Ramiro ◽  
Yolanda R. Carrasco ◽  
Virginia G. de Yebenes ◽  
Juan P. Albar ◽  
...  

During thymocyte development, progression from T cell receptor (TCR)β to TCRα rearrangement is mediated by a CD3-associated pre-TCR composed of the TCRβ chain paired with pre-TCRα (pTα). A major issue is how surface expression of the pre-TCR is regulated during normal thymocyte development to control transition through this checkpoint. Here, we show that developmental expression of pTα is time- and stage-specific, and is confined in vivo to a limited subset of large cycling human pre-T cells that coexpress low density CD3. This restricted expression pattern allowed the identification of a novel subset of small CD3− thymocytes lacking surface pTα, but expressing cytoplasmic TCRβ, that represent late noncycling pre-T cells in which recombination activating gene reexpression and downregulation of T early α transcription are coincident events associated with cell cycle arrest, and immediately preceding TCRα gene expression. Importantly, thymocytes at this late pre-T cell stage are shown to be functional intermediates between large pTα+ pre-T cells and TCRα/β+ thymocytes. The results support a developmental model in which pre-TCR–expressing pre-T cells are brought into cycle, rapidly downregulate surface pre-TCR, and finally become small resting pre-T cells, before the onset of TCRα gene expression.


1990 ◽  
Vol 172 (6) ◽  
pp. 1805-1817 ◽  
Author(s):  
J D Mountz ◽  
T Zhou ◽  
J Eldridge ◽  
K Berry ◽  
H Blüthmann

The lpr gene in homozygous form induces development of CD4-CD8-B220+ T cells and lymphadenopathy in MRL and C57BL/6 mice. Although the propensity for excessive production of T cells is related to an intrinsic T cell defect, a thymus is also required because neonatal thymectomy eliminates lymphadenopathy. Recent evidence suggests that excessive production and release of autoreactive T cells from the thymus of lpr/lpr mice might lead to downregulation of CD4 and CD8 as a "fail safe" tolerance mechanism that occurs during late thymic or post-thymic development. To test this hypothesis, T cell receptor (TCR) transgenic mice that produce large numbers of immature thymocytes recognizing the H-2Db and male H-Y antigens were backcrossed with C57BL/6-lpr/lpr mice and MRL-lpr/lpr mice. It was predicted that Db male lpr/lpr mice would produce large numbers of autoreactive T cells during early thymic development that would lead to an accelerated lymphoproliferative disease. In contrast, Db female lpr/lpr mice would produce large numbers of Db H-Y-reactive T cells, but might not develop lymphadenopathy because the male H-Y antigen would not be present. Unexpectedly, there was complete elimination of lymphadenopathy in both male and female TCR transgenic lpr/lpr mice. The elimination of lymphadenopathy was not due to a failure of thymic maturation since the thymus of H-2Db female lpr/lpr mice contained nearly normal numbers of mature thymocytes. Elimination of lymphadenopathy was also not due to a lack of autoreactive T cells in the peripheral lymph nodes (LN) since there was an increased syngeneic mixed lymphocyte proliferative response of LNT cells from transgenic lpr/lpr compared with +/+ mice in vitro. Hypergammaglobulinemia and autoantibody production in the transgenic lpr/lpr was present at levels comparable with or higher than control nontransgenic lpr/lpr mice, suggesting a dissociation of autoantibody production from the lymphoproliferative disease in the TCR transgenic mice. Conversely, the development of lymphadenopathy and production of CD4-CD8-B220+ T cells appear to be intimately linked, as both were completely eliminated in T cells expressing the transgenic TCR. We propose that lymphoproliferation and production of CD4-CD8-6B2+ T cells in lpr/lpr mice is related to decreased expression of the TCR, and providing the T cells with a rearranged TCR transgene overcomes this defect.


1999 ◽  
Vol 190 (8) ◽  
pp. 1093-1102 ◽  
Author(s):  
Iannis Aifantis ◽  
Vadim I. Pivniouk ◽  
Frank Gärtner ◽  
Jacqueline Feinberg ◽  
Wojciech Swat ◽  
...  

Signaling via the pre-T cell receptor (TCR) is required for the proliferative expansion and maturation of CD4−CD8− double-negative (DN) thymocytes into CD4+CD8+ double-positive (DP) cells and for TCR-β allelic exclusion. The adaptor protein SH2 domain–containing leukocyte protein (SLP)-76 has been shown to play a crucial role in thymic development, because thymocytes of SLP-76−/− mice are arrested at the CD25+CD44− DN stage. Here we show that SLP-76−/− DN thymocytes express the pre-TCR on their surfaces and that introduction of a TCR-α/β transgene into the SLP-76−/− background fails to cause expansion of DN thymocytes or developmental progression to the DP stage. Moreover, analysis of TCR-β rearrangement in SLP-76−/− TCR-transgenic mice or in single CD25+CD44− DN cells from SLP-76−/− mice indicates an essential role of SLP-76 in TCR-β allelic exclusion.


2008 ◽  
Vol 205 (4) ◽  
pp. 929-938 ◽  
Author(s):  
Na Xiong ◽  
Li Zhang ◽  
Chulho Kang ◽  
David H. Raulet

The production of distinct sets of T cell receptor (TCR) γδ+ T cells occurs in an ordered fashion in thymic development. The Vγ3 and Vγ4 genes, located downstream in the TCRγ Cγ1 gene cluster, are expressed by the earliest waves of developing TCRγδ+ T cells in the fetal thymus, destined for intraepithelial locations. Upstream Vγ2 and Vγ5 genes are expressed in later waves in the adult and constitute most TCRγδ+ T cells in secondary lymphoid tissue. This developmental pattern is caused in part by a preference for rearrangements of the downstream Vγ3 and Vγ4 genes in the early fetal stage, which switches to a preference for rearrangements of the upstream Vγ2 and Vγ5 gene rearrangements in the adult. Our gene targeting studies show that the downstream Vγ genes rearrange preferentially in the early fetal thymus because of their downstream location, independent of promoter or recombination signal sequences and unrelated to the extent of germline transcription. Remarkably, gene deletion studies show that the downstream Vγ genes competitively inhibit upstream Vγ rearrangements at the fetal stage. These data provide a mechanism for specialization of the fetal thymus for the production of T cells expressing specific Vγ genes.


1997 ◽  
Vol 186 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Harumi Suzuki ◽  
Yoichi Shinkai ◽  
Lawrence G. Granger ◽  
Frederick W. Alt ◽  
Paul E. Love ◽  
...  

As a consequence of positive selection in the thymus, immature CD4+8+ double-positive, [DP] thymocytes selectively terminate synthesis of one coreceptor molecule and, as a result, differentiate into either CD4+ or CD8+ T cells. The decision by individual DP thymocytes to terminate synthesis of one or the other coreceptor molecule is referred to as lineage commitment. Previously, we reported that the intrathymic signals that induced commitment to the CD4 versus CD8 T cell lineages were markedly asymmetric. Notably, CD8 commitment appeared to require lineage-specific signals, whereas CD4 commitment appeared to occur in the absence of lineage-specific signals by default. Consequently, it was unclear whether CD4 commitment, as revealed by selective termination of CD8 coreceptor synthesis, occurred in all DP thymocytes, or whether CD4 commitment occurred only in T cell receptor (TCR)–CD3-signaled DP thymocytes. Here, we report that selective termination of CD8 coreceptor synthesis does not occur in DP thymocytes spontaneously. Rather, CD4 commitment in DP thymocytes requires signals transduced by either CD3 or ζ chains, which can signal CD4 commitment even in the absence of clonotypic TCR chains.


Sign in / Sign up

Export Citation Format

Share Document