scholarly journals The Role of β7 Integrins in CD8 T Cell Trafficking During an Antiviral Immune Response

1999 ◽  
Vol 189 (10) ◽  
pp. 1631-1638 ◽  
Author(s):  
Leo Lefrançois ◽  
Christina M. Parker ◽  
Sara Olson ◽  
Werner Muller ◽  
Norbert Wagner ◽  
...  

The requirement of β7 integrins for lymphocyte migration was examined during an ongoing immune response in vivo. Transgenic mice (OT-I) expressing an ovalbumin-specific major histocompatibility complex class I–restricted T cell receptor for antigen were rendered deficient in expression of all β7 integrins or only the αEβ7 integrin. To quantitate the relative use of β7 integrins in migration in vivo, equal numbers of OT-I and OT-I-β7−/− or OT-I-αE−/− lymph node (LN) cells were adoptively transferred to normal mice. Although OT-I-β7−/− LN cells migrated to mesenteric LN and peripheral LN as well as wild-type cells, β7 integrins were required for naive CD8 T cell and B cell migration to Peyer's patch. After infection with a recombinant virus (vesicular stomatitis virus) encoding ovalbumin, β7 integrins became critical for migration of activated CD8 T cells to the mesenteric LN and Peyer's patch. Naive CD8 T cells did not enter the lamina propria or the intestinal epithelium, and the majority of migration of activated CD8 T cells to the small and large intestinal mucosa, including the epithelium, was β7 integrin–mediated. The αEβ7 integrin appeared to play no role in migration during a primary CD8 T cell immune response in vivo. Furthermore, despite dramatic upregulation of αEβ7 by CD8 T cells after entry into the epithelium, long-term retention of intestinal intraepithelial lymphocytes was also αEβ7 independent.

Metabolites ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 461
Author(s):  
Jenifer Sanchez ◽  
Ian Jackson ◽  
Katie R. Flaherty ◽  
Tamara Muliaditan ◽  
Anna Schurich

Upon activation T cells engage glucose metabolism to fuel the costly effector functions needed for a robust immune response. Consequently, the availability of glucose can impact on T cell function. The glucose concentrations used in conventional culture media and common metabolic assays are often artificially high, representing hyperglycaemic levels rarely present in vivo. We show here that reducing glucose concentration to physiological levels in culture differentially impacted on virus-specific compared to generically activated human CD8 T cell responses. In virus-specific T cells, limiting glucose availability significantly reduced the frequency of effector-cytokine producing T cells, but promoted the upregulation of CD69 and CD103 associated with an increased capacity for tissue retention. In contrast the functionality of generically activated T cells was largely unaffected and these showed reduced differentiation towards a residency phenotype. Furthermore, T cells being cultured at physiological glucose concentrations were more susceptible to viral infection. This setting resulted in significantly improved lentiviral transduction rates of primary cells. Our data suggest that CD8 T cells are exquisitely adapted to their niche and provide a reminder of the need to better mimic physiological conditions to study the complex nature of the human CD8 T cell immune response.


2002 ◽  
Vol 76 (1) ◽  
pp. 151-164 ◽  
Author(s):  
Rafaela Holtappels ◽  
Doris Thomas ◽  
Jürgen Podlech ◽  
Matthias J. Reddehase

ABSTRACT The importance of CD8 T cells for the control of cytomegalovirus (CMV) infection has raised interest in the identification of immunogenic viral proteins as candidates for vaccination and cytoimmunotherapy. The final aim is to determine the viral “immunome” for any major histocompatibility complex class I molecule by antigenicity screening of proteome-derived peptides. For human CMV, there is a limitation to this approach: the T cells used as responder cells for peptide screening are usually memory cells that have undergone in vivo selection. On this basis, pUL83 (pp65) and pUL123 (IE1 or pp68 to -72) were classified as immunodominant proteins. It is an open question whether this limited “memory immunome” really reflects the immunogenic potential of the human CMV proteome. Here we document an analogous focus of the memory repertoire on two proteins of murine CMV. Specifically, ca. 80% of all memory CD8 T cells in the spleen as well as in persisting pulmonary infiltrates were found to be specific for the known IE1 peptide 168YPHFMPTNL176 and for the peptide 257AGPPRYSRI265, newly defined here, derived from open reading frame m164. Notably, CD8 T-cell lines of both specificities protected against acute infection upon adoptive transfer. In contrast, the natural immune response to acute infection in draining lymph nodes and in the lungs indicated a somewhat broader specificity repertoire. We conclude that the low number of antigenic peptides identified so far for CMVs reflects a focused memory repertoire, and we predict that more antigenic peptides will be disclosed by analysis of the acute immune response.


Blood ◽  
2008 ◽  
Vol 112 (9) ◽  
pp. 3704-3712 ◽  
Author(s):  
Mark P. Rubinstein ◽  
Nicholas A. Lind ◽  
Jared F. Purton ◽  
Pauline Filippou ◽  
J. Adam Best ◽  
...  

Although it is known that interleukin-7 (IL-7) and IL-15 influence the survival and turnover of CD8+ T cells, less is known about how these cytokines affect different subsets during the course of the immune response. We find that IL-7 and IL-15 differentially regulate CD8+ T-cell subsets defined by KLRG1 and CD127 expression during the contraction phase of the immune response. The provision of IL-15, or the related cytokine IL-2, during contraction led to the preferential accumulation of KLRG1hiCD127lo CD8+ T cells, whereas provision of IL-7 instead favored the accumulation of KLRG1loCD127hi cells. While IL-7 and IL-15 both induced proliferation of KLRG1lo cells, KLRG1hi cells exhibited an extraordinarily high level of resistance to cytokine-driven proliferation in vivo despite their dramatic accumulation upon IL-15 administration. These results suggest that IL-15 and IL-2 greatly improve the survival of KLRG1hi CD8+ T cells, which are usually destined to perish during contraction, without inducing proliferation. As the availability of IL-15 and IL-2 is enhanced during periods of extended inflammation, our results suggest a mechanism in which a population of cytokine-dependent KLRG1hi CD8+ T cells is temporarily retained for improved immunity. Consideration of these findings may aid in the development of immunotherapeutic strategies against infectious disease and cancer.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 284-284
Author(s):  
Yuhong Chen ◽  
Yongwei Zheng ◽  
Xiaona You ◽  
Gang Xin ◽  
Mei Yu ◽  
...  

Abstract Small GTPases regulate multiple signaling pathways and individual Ras member can have distinct biological function. To overcome embryonic lethality of Kras-deficient mice, we generated and examined mice with hematopoietic- and T cell-specific deletion of Kras. In VavCreKrasfl/fl mice with hematopoietic deletion of Kras, thymic T-cell development was normal based on the presence of normal populations of total, CD4- CD8-, CD4+ CD8+, CD4+ and CD8+ thymocytes. The populations of splenic CD4+ and CD8+ T cells were also comparable between VavCreKrasfl/fl relative to control mice. In addition, no consistent defects in the 3 H-thymidine incorporation rate of Kras-deficient splenic CD4+ or CD8+ T cells in response to anti-CD3 or anti-CD3 plus IL-2 was detected. Nonetheless, we studied the effect of Kras deficiency on CD8 T-cell immune response to acute infection of the Armstrong strain of lymphocytic choriomeningitis virus (LCMV). Sub-lethally irradiated Rag1-deficient mice transplanted with bone marrow (BM) cells from VavCreKrasfl/fl or control mice were subjected to LCMV infection. Infection-induced expansion of CD8 T cells and generation of LCMV epitope gp33-specific CD8 T cells were markedly reduced in the recipients that received the BM from VavCreKrasfl/fl relative to control mice. Following in vitro stimulation with the LCMV epitope gp33, the induction of IFNg-expressing CD8 T cells from LCMV-infected recipients that received the BM from VavCreKrasfl/fl mice was dramatically reduced. Further, BM chimeric mice with CD8 T cell-specific deficiency generated by transplantation of lethally irradiated CD8 T cell-depleted CD45.1 congenic mice with a mixture of BM cells from VavCreKrasfl/fl mice and BM cells from CD8 T cell-deficient mice exhibited an impaired CD8 T-cell immune response to LCMV infection. Lastly, we examined the role of Kras in TCR signaling. The level of total TCR-activated Ras (Ras-GTP) was markedly reduced in Kras-deficient relative to control CD8 T cells. Importantly, TCR-induced ERK1/2 activation was impaired in Kras-deficient relative to control CD8 T cells. Consistently, TCR-induced activation of Raf-1 and MEK1/2 was markedly reduced in mutant CD8 T cells. However, TCR-induced JNK and p38 activation as well as Ca2+ flux were normal in Kras-deficient CD8 T cells. Of note, TCR-induced activation of Ca2+ flux, JNK and p38 as well as ERK1/2, MEK1/2 and Raf1 was normal in Kras-deficient relative to control CD4 cells. Taken together, these data demonstrate that Kras is dispensable for T cell development or TCR-induced proliferation of CD4 or CD8 T cells in vitro, but regulates TCR-induced activation of the Raf-1/MEK/ERK pathway in CD8 but not CD4 T cells and intrinsically controls CD8 T-cell immune response to viral infection. Disclosures No relevant conflicts of interest to declare.


2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


2021 ◽  
Author(s):  
Leonardo Estrada ◽  
Didem Agac Cobanoglu ◽  
Aaron Wise ◽  
Robert Maples ◽  
Murat Can Cobanoglu ◽  
...  

Viral infections drive the expansion and differentiation of responding CD8+ T cells into variegated populations of cytolytic effector and memory cells. While pro-inflammatory cytokines and cell surface immune receptors play a key role in guiding T cell responses to infection, T cells are also markedly influenced by neurotransmitters. Norepinephrine is a key sympathetic neurotransmitter, which acts to suppress CD8 + T cell cytokine secretion and lytic activity by signaling through the beta2-adrenergic receptor (ADRB2). Although ADRB2 signaling is considered generally immunosuppressive, its role in regulating differentiation of effector T cells in response to infection has not been investigated. Using an adoptive transfer approach, we compared the expansion and differentiation of wild type (WT) to Adrb2-/- CD8 + T cells throughout the primary response to vesicular stomatitis virus (VSV) infection in vivo. We measured the dynamic changes in transcriptome profiles of antigen-specific CD8 + T cells as they responded to VSV. Within the first 7 days of infection, WT cells out-paced the expansion of Adrb2-/- cells, which correlated with reduced expression of IL-2 and the IL-2Ralpha; in the absence of ADRB2. RNASeq analysis identified over 300 differentially expressed genes that were both temporally regulated following infection and selectively regulated in WT vs Adrb2-/- cells. These genes contributed to major transcriptional pathways including cytokine receptor activation, signaling in cancer, immune deficiency, and neurotransmitter pathways. By parsing genes within groups that were either induced or repressed over time in response to infection, we identified three main branches of genes that were differentially regulated by the ADRB2. These gene sets were predicted to be regulated by specific transcription factors involved in effector T cell development, such as Tbx21 and Eomes. Collectively, these data demonstrate a significant role for ADRB2 signaling in regulating key transcriptional pathways during CD8 + T cells responses to infection that may dramatically impact their functional capabilities and downstream memory cell development.


1999 ◽  
Vol 190 (10) ◽  
pp. 1535-1540 ◽  
Author(s):  
Robert S. Mittler ◽  
Tina S. Bailey ◽  
Kerry Klussman ◽  
Mark D. Trailsmith ◽  
Michael K. Hoffmann

The 4-1BB receptor (CDw137), a member of the tumor necrosis factor receptor superfamily, has been shown to costimulate the activation of T cells. Here we show that anti–mouse 4-1BB monoclonal antibodies (mAbs) inhibit thymus-dependent antibody production by B cells. Injection of anti–4-1BB mAbs into mice being immunized with cellular or soluble protein antigens induced long-term anergy of antigen-specific T cells. The immune response to the type II T cell–independent antigen trinintrophenol-conjugated Ficoll, however, was not suppressed. Inhibition of humoral immunity occurred only when anti–4-1BB mAb was given within 1 wk after immunization. Anti–4-1BB inhibition was observed in mice lacking functional CD8+ T cells, indicating that CD8+ T cells were not required for the induction of anergy. Analysis of the requirements for the anti–4-1BB–mediated inhibition of humoral immunity revealed that suppression could not be adoptively transferred with T cells from anti–4-1BB–treated mice. Transfer of BALB/c splenic T cells from sheep red blood cell (SRBC)-immunized and anti–4-1BB–treated mice together with normal BALB/c B cells into C.B-17 severe combined immunodeficient mice failed to generate an anti-SRBC response. However, B cells from the SRBC-immunized, anti–4-1BB–treated BALB/c mice, together with normal naive T cells, exhibited a normal humoral immune response against SRBC after transfer, demonstrating that SRBC-specific B cells were left unaffected by anti–4-1BB mAbs.


Sign in / Sign up

Export Citation Format

Share Document