scholarly journals CC Chemokine Receptor 7–dependent and –independent Pathways for Lymphocyte Homing

2001 ◽  
Vol 194 (12) ◽  
pp. 1875-1881 ◽  
Author(s):  
Golo Henning ◽  
Lars Ohl ◽  
Tobias Junt ◽  
Phillip Reiterer ◽  
Volker Brinkmann ◽  
...  

Cognate interaction of chemokine receptor CCR7 on lymphocytes with its ligands CCL19 and CCL21 expressed on high endothelial venules (HEVs) is essential for effective migration of T and B cells across HEVs into secondary lymphoid organs. Plt mice, which lack expression of CCL19 and CCL21-ser, both ligands for CCR7 on HEVs, as well as CCR7-deficient mice, have a defective cell migration and reduced homing of lymphocytes. FTY720, a novel immunosuppressant, causes a reduction of lymphocytes in peripheral blood and tissues and their sequestration into lymphoid tissues. In this study we demonstrate that FTY720 rescues the homing defect in both CCR7−/− mice and plt mice. After FTY720 treatment, the number of CD4+ and CD8+ T cells as well as B cells in peripheral blood is reduced while pertussis toxin–sensitive homing into peripheral lymph nodes, mesenteric lymph node, and Peyer's patches is increased. Immunohistology demonstrates that FTY720 enables these cells to enter lymphoid tissue through HEVs. Thus, our data suggest an alternative G-αi-dependent, CCR7-CCL19/CCL21-independent mechanism for lymphocyte homing through HEVs which is strongly augmented in the presence of FTY720.

Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4104-4112 ◽  
Author(s):  
Jean-Marc Gauguet ◽  
Steven D. Rosen ◽  
Jamey D. Marth ◽  
Ulrich H. von Andrian

Abstract Blood-borne lymphocyte trafficking to peripheral lymph nodes (PLNs) depends on the successful initiation of rolling interactions mediated by L-selectin binding to sialomucin ligands in high endothelial venules (HEVs). Biochemical analysis of purified L-selectin ligands has identified posttranslational modifications mediated by Core2GlcNAcT-I and high endothelial cell GlcNAc-6-sulfotransferase (HECGlcNAc6ST). Consequently, lymphocyte migration to PLNs of C2GlcNAcT-I-/- and HEC-GlcNAc6ST-/- mice was reduced; however, B-cell homing was more severely compromised than T-cell migration. Accordingly, intravital microscopy (IVM) of PLN HEVs revealed a defect in B-cell tethering and increased rolling velocity (Vroll) in C2GlcNAcT-I-/- mice that was more pronounced than it was for T cells. By contrast, B- and T-cell tethering was normal in HEC-GlcNAc6ST-/- HEVs, but Vroll was accelerated, especially for B cells. The increased sensitivity of B cells to glycan deficiencies was caused by lower expression levels of L-selectin; L-selectin+/- T cells expressing L-selectin levels equivalent to those of B cells exhibited intravascular behavior similar to that of B cells. These results demonstrate distinct functions for C2GlcNAcT-I and HEC-GlcNAc6ST in the differential elaboration of HEV glycoproteins that set a threshold for the amount of L-selectin needed for lymphocyte homing. (Blood. 2004;104:4104-4112)


1991 ◽  
Vol 114 (2) ◽  
pp. 343-349 ◽  
Author(s):  
E L Berg ◽  
M K Robinson ◽  
R A Warnock ◽  
E C Butcher

The trafficking of lymphocytes from the blood and into lymphoid organs is controlled by tissue-selective lymphocyte interactions with specialized endothelial cells lining post capillary venules, in particular the high endothelial venules (HEV) found in lymphoid tissues and sites of chronic inflammation. Lymphocyte interactions with HEV are mediated in part by lymphocyte homing receptors and tissue-specific HEV determinants, the vascular addressins. A peripheral lymph node addressin (PNAd) has been detected immunohistologically in mouse and man by monoclonal antibody MECA-79, which inhibits lymphocyte homing to lymph nodes and lymphocyte binding to lymph node and tonsillar HEV. The human MECA-79 antigen, PNAd, is molecularly distinct from the 65-kD mucosal vascular addressin. The most abundant iodinated species by SDS-PAGE is 105 kD. When affinity isolated and immobilized on glass slides, MECA-79 immunoisolated material binds human and mouse lymphocytes avidly in a calcium dependent manner. Binding is blocked by mAb MECA-79, by antibodies against mouse or human LECAM-1 (the peripheral lymph node homing receptor, the MEL-14 antigen, LAM-1), and by treatment of PNAd with neuraminidase. Expression of LECAM-1 cDNA confers PNAd binding ability on a transfected B cell line. We conclude that LECAM-1 mediates lymphocyte binding to PNAd, an interaction that involves the lectin activity of LECAM-1 and carbohydrate determinants on the addressin.


1991 ◽  
Vol 115 (1) ◽  
pp. 85-95 ◽  
Author(s):  
R E Mebius ◽  
P R Streeter ◽  
J Brevé ◽  
A M Duijvestijn ◽  
G Kraal

Tissue-selective lymphocyte homing is directed in part by specialized vessels that define sites of lymphocyte exit from the blood. These vessels, the post capillary high endothelial venules (HEV), are found in organized lymphoid tissues, and at sites of chronic inflammation. Lymphocytes bearing specific receptors, called homing receptors, recognize and adhere to their putative ligands on high endothelial cells, the vascular addressins. After adhesion, lymphocytes enter organized lymphoid tissues by migrating through the endothelial cell wall. Cells and/or soluble factors arriving in lymph nodes by way of the afferent lymph supply have been implicated in the maintenance of HEV morphology and efficient lymphocyte homing. In the study reported here, we assessed the influence of afferent lymphatic vessel interruption on lymph node composition, organization of cellular elements; and on expression of vascular addressins. At 1 wk after occlusion of afferent lymphatic vessels, HEV became flat walled and expression of the peripheral lymph node addressin disappeared from the luminal aspect of most vessels, while being retained on the abluminal side. In addition, an HEV-specific differentiation marker, defined by mAb MECA-325, was undetectable at 7-d postocclusion. In vivo homing studies revealed that these modified vessels support minimal lymphocyte traffic from the blood. After occlusion, we observed dramatic changes in lymphocyte populations and at 7-d postsurgery, lymph nodes were populated predominantly by cells lacking the peripheral lymph node homing receptor LECAM-1. In addition, effects on nonlymphoid cells were observed: subcapsular sinus macrophages, defined by mAb MOMA-1, disappeared; and interdigitating dendritic cells, defined by mAb NLDC-145, were dramatically reduced. These data reveal that functioning afferent lymphatics are centrally involved in maintaining normal lymph node homeostasis.


2003 ◽  
Vol 31 (2) ◽  
pp. 313-317 ◽  
Author(s):  
A. van Zante ◽  
S.D. Rosen

Lymphocytes from the blood home to secondary lymphoid tissues through a process of tethering, rolling, firm adhesion and transmigration. Tethering and rolling of lymphocytes is mediated by the interaction of L-selectin on lymphocytes with sulphated ligands expressed by the specialized endothelial cells of high endothelial venules (HEVs). The sulphate-dependent monoclonal antibody MECA79 stains HEVs in peripheral lymph nodes and recognizes the complex of HEV ligands for L-selectin termed peripheral node addressin. High endothelial cell GlcNAc-6-sulphotransferase/L-selectin ligand sulphotransferase is a HEV-expressed sulphotransferase that contributes to the formation of the MECA79 epitope and L-selectin ligands on lymph node HEVs. MECA79-reactive vessels are also common at sites of chronic inflammation, suggesting mechanistic parallels between lymphocyte homing and inflammatory trafficking.


2006 ◽  
Vol 26 (4) ◽  
pp. 1549-1557 ◽  
Author(s):  
Cornelia Oetke ◽  
Mary C. Vinson ◽  
Claire Jones ◽  
Paul R. Crocker

ABSTRACT Sialoadhesin (Sn, also called Siglec-1 or CD169) is a transmembrane receptor and the prototypic member of the Siglec family of sialic acid binding immunoglobulin-like lectins. It is expressed on specialized subsets of resident macrophages in hematopoietic and lymphoid tissues and on inflammatory macrophages. In order to investigate its function, we generated Sn-deficient mice and confirmed that these mice are true nulls by fluorescence-activated cell sorter analysis and immunohistochemistry. Mice deficient in Sn were viable and fertile and showed no developmental abnormalities. Analysis of cell populations revealed no differences in bone marrow, peritoneal cavity, and thymus, but there was a small increase in CD8 T cells and a decrease in B220-positive cells in spleens and lymph nodes of Sn-deficient mice. Furthermore, in spleen there was a slight decrease in follicular B cells with an increase in numbers of marginal zone B cells. B- and T-cell maturation as well as responses to stimulation with thioglycolate were only slightly affected by Sn deficiency. Immunoglobulin titers in Sn-deficient mice were significantly decreased for immunoglobulin M (IgM) but similar for IgG subclasses. These results suggest a role for sialoadhesin in regulating cells of the immune system rather than in influencing steady-state hematopoiesis.


Blood ◽  
2012 ◽  
Vol 119 (22) ◽  
pp. 5250-5260 ◽  
Author(s):  
Benedetta Savino ◽  
Marina G. Castor ◽  
Nicoletta Caronni ◽  
Adelaida Sarukhan ◽  
Achille Anselmo ◽  
...  

Abstract The atypical chemokine receptor D6 is a decoy and scavenger receptor for most inflammatory CC chemokines and prevents the development of exacerbated inflammatory reactions. Here we report that mice lacking D6 expression in the nonhematopoietic compartment have a selective increase in the number of Ly6Chigh monocytes in the circulation and in secondary lymphoid tissues. Under inflammatory conditions, Ly6Chigh monocytes accumulate in increased number in secondary lymphoid organs of D6−/− mice in a CCR2-dependent manner. Ly6Chigh monocytes derived from D6−/− mice have enhanced immunosuppressive activity, inhibit the development of adaptive immune responses, and partially protect mice from the development of GVHD. Thus, control of CCR2 ligands by D6 regulates the traffic of Ly6Chigh monocytes and controls their immunosuppressive potential.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 378-378
Author(s):  
Piers EM Patten ◽  
Charles C Chu ◽  
Rajendra N Damle ◽  
Steven L. Allen ◽  
Jonathan E Kolitz ◽  
...  

Abstract Abstract 378 During the course of CLL, ongoing genetic changes occur within the leukemic clone and such changes associate with disease progression. Activation-induced cytidine deaminase (AID), the enzyme required for IGV gene somatic hypermutation and isotype class switching in B cells, is a candidate enzyme for causing such changes. Depending upon the detection method, circulating CLL cells express mRNA for AID in 40 – 100% of patients, although at any point only a very small percentage of cells within the clone express this message. Because B lymphocytes must be in the cell cycle for AID-induced DNA changes to occur, we hypothesized that AID protein would be contained within recently divided CLL cells and that these cells would exhibit new IGV mutations and/or class switching. Using appropriate markers for recently divided cells, we found that AID mRNA is enriched in/limited to this subset. Furthermore, because dividing cells in CLL are principally found within bone marrow and secondary lymphoid tissues, we analyzed such cells in lymph nodes (LNs) for AID protein expression and activity. In 50% of LNs infiltrated with CLL (n=10), AID protein was detected in large cells expressing a CLL phenotype; these cells were predominantly in the cell cycle. Nevertheless, even in those cases where CLL cells expressed AID, most cycling cells were AID protein negative. FACS analysis of dispersed LN cells confirmed the presence of AID protein-expressing cells and such cells had the phenotype of recently divided cells. To demonstrate that AID protein was functionally competent, we co-cultured peripheral blood CLL cells with anti-CD40 mAb and IL-4 in the presence of irradiated CD32-transfected fibroblasts, a model that mimics the tissue microenvironment. In 16 patients, we showed that peripheral blood leukemic cells could express AID protein, although the degree of upregulation was highly variable between cases. Using the dye CFSE to track CD5+CD19+ cell division, we found that AID protein always occurred when multiply divided cells were present. Some cases showed immediate AID production prior to division, while others exhibited no or little expression until passing through several cell cycles. AID protein causes double strand breaks (DSBs) within DNA, for example in IG switch regions during class switch recombination. We therefore used confocal microscopy to detect the presence of phospho-histone H2A.X (pH2AX), which localizes to DSBs, in CFSE-labeled cells stimulated for 14 days by the conditions mentioned above. At least 10 × 60 magnification images from 3 cultures showing cell division and AID upregulation were obtained, and the fluorescent signals for CFSE and pH2AX quantified from greater than 250 CD23+ CLL cells in each case. A mean of 20.4% of cells (range 10.4 – 38.2%) showed increased fluorescence with anti-pH2AX compared to unstimulated cells. Moreover, stimulated cultures demonstrated increased anti-pH2AX signal in a significantly greater number of cells with diminished CFSE intensity, which are the most divided cells, as compared to less/undivided cells with higher CFSE intensity (p<0.0001 in all cases analyzed, Fisher's exact test). In addition, 20 cell aliquots of unstimulated CLL cells and stimulated CFSE-labeled CLL cells were sorted after culture, yielding pure populations of either undivided cells or cells that had undergone 5 – 6 divisions. While all sorted populations yielded unswitched mu IG transcripts (≥75% wells positive in all groups), switched gamma transcripts with the same V-D-J rearrangement as the leukemic clone were only obtained from divided cells (range 4–9% wells positive), and not present in either undivided or unstimulated cells (0% wells positive). Taken together, the presence of heightened numbers of DSBs in the most divided cells compared to no/minimally divided cells and evidence of IG class switching in the former, indicate that AID protein was functional in these activated CLL peripheral blood cultures. In all, these data demonstrate that in CLL functional AID protein predominates in cells that are dividing or have a recently divided phenotype, although cases vary in the number of cells expressing AID as well as the relative amounts of enzyme expression. Differential AID activity between discrete CLL cases may relate to the development of new DNA mutations leading to clonal evolution and the variable nature of disease progression seen in this disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 668-668
Author(s):  
Phuong-Hien Nguyen ◽  
Nina Reinart ◽  
Michael Hallek

Abstract The Src family kinase Lyn is predominantly expressed in B cells and plays a central role in initiating B cell receptor (BCR) signaling. Lyn is associated with BCR complexes and is renowned for its role in B cell activation and proliferation. Active Lyn contributes to positive regulation of signalling through tyrosine phosphorylation of components of the BCR. Intriguingly, Lyn was also shown as a negative regulator of BCR signal transduction. Lyn plays an essential role in negative regulation of signalling through its unique ability to phosphorylate immunoreceptor tyrosine based inhibition motifs (ITIM) in inhibitory cell surface receptors. ITIM phosphorylation induces the recruitment of inhibitory phosphatases such as SHP-1/2 and SHIP-1, which attenuate BCR signalling. Lyn-deficient mice have reduced number of B cells and increased numbers of myeloid progenitors. It was reported that expression and activity of Lyn in human chronic lymphocytic leukemia (CLL) is elevated compared to healthy B cells. Besides, higher levels of Lyn are associated with a shorter treatment-free survival of CLL patients. This rises up a hypothesis about Lyn’s significant role in B cell tumorigenesis, malignant transformation of B cells, and the balance between myeloid cells and B lymphocytes. We generated Eµ-TCL1 transgenic LYN-deficient mice (TCL1+/wtLYN-/-) and monitored them in order to identify the population of malignant B cells and to characterize the development of malignant cells in these mice in comparison with Eµ-TCL1 transgenic mice (TCL1+/wtLYNwt/wt). In comparison to TCL1+/wtLYNwt/wt mice, TCL1+/wtLYN-/- mice show a significantly reduced number of malignant B cells in the peripheral blood, as well as a reduced leukocyte count. Besides, TCL1+/wtLYN-/- mice have significantly decreased infiltration of malignant B cells in lymphoid tissues such as spleen, liver, lymph node and bone marrow. This result is also resembled in a hepato-splenomegaly in the TCL1+/wtLYNwt/wt mice. These mice develop severe splenomegaly and hepatomegaly due to infiltration of malignant cells, while TCL1+/wtLYN-/- mice do not develop hepatomegaly. The non-transgenic LYN-/- control mice develop splenomegaly due to infiltration of myeloid cells. Although TCL1+/wtLYN-/- mice have hindered development of TCL1-induced CLL, preliminary data suggest it is not only due to LYN-deficiency in B cell compartment of these mice. Indeed, B cell of TCL1+/wtLYN-/- mice show enhanced proliferation and better survival ex vivo compared to TCL1+/wtLYNwt/wt mice. Notably, TCL1+/wtLYN-/- mice developed a skewed microenvironment which might contribute to CLL down regulation. LYN-/- microenvironment, particularly in aged mice, does not support engraftment of TCL1-induced leukemic B cell as well as LYNwt/wt mice in our transplantation model. These results point to a complex regulation of Lyn signalling in CLL involving not only leukemic cells but also cells of the micromillieu, that needs further investigation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1989 ◽  
Vol 74 (2) ◽  
pp. 751-760 ◽  
Author(s):  
J de los Toyos ◽  
S Jalkanen ◽  
EC Butcher

Abstract The homing of lymphocytes is controlled by interactions with high endothelial venules (HEV), specialized vessels that define sites of lymphocyte extravasation into lymph nodes and inflamed tissues. In humans, lymphocyte-HEV binding involves a lymphocyte surface glycoprotein (GP) of 85 to 95 kd (CD44, H-CAM), defined by monoclonal antibody (MoAb) Hermes-1. To define the expression of this homing- associated adhesion molecule during human lymphocyte development, we performed two-color immunofluorescence analyses of human bone marrow (BM), thymus, peripheral blood (PB), and tonsillar lymphocytes. The highest levels of Hermes-1 antigen are displayed by circulating B and T cells in the blood, which are uniformly positive and bear roughly twice the level of antigen present on mature lymphocytes within organized lymphoid tissues and BM. “Immature” (CD4+, CD8+) T cells in the thymus are Hermes-1lo to-, whereas thymocytes of mature phenotype (CD4+ or CD8+) are positive. The Hermes-1 antigen is present at high levels on the same population of thymocytes that bears high surface levels of CD3, a component of the T-cell antigen receptor complex, suggesting that levels of T-cell homing and antigen receptors characteristic of mature peripheral T cells appear coordinately during thymocyte maturation/selection. Essentially all T cells in the periphery are Hermes-1hi, including T blasts, and the homing-associated antigen is maintained at high levels on T cells stimulated in vitro by phytohemagglutinin (PHA) and on interleukin-2 (IL-2) maintained T-cell clones and lines. In contrast, although most resting IgD+ B cells are positive a significant fraction of B cells in tonsils are Hermes-1lo to- ; these cells are predominantly PNAhi, IgD-, and CD20hi, a phenotype characteristic of sessile, activated B cells in germinal centers. In all lymphocyte populations examined, there is a linear correlation in staining for Hermes-1 and for Hermes-3, an antibody that defines a distinct functionally important epitope on this molecule. The results demonstrate a precise regulation of this homing-associated antigen during lymphocyte differentiation.


Sign in / Sign up

Export Citation Format

Share Document