scholarly journals The Strategy of T Cell Antigen-presenting Cell Encounter in Antigen-draining Lymph Nodes Revealed by Imaging of Initial T Cell Activation

2003 ◽  
Vol 198 (5) ◽  
pp. 715-724 ◽  
Author(s):  
Marc Bajénoff ◽  
Samuel Granjeaud ◽  
Sylvie Guerder

The development of an immune response critically relies on the encounter of rare antigen (Ag)-specific T cells with dendritic cells (DCs) presenting the relevant Ag. How two rare cells find each other in the midst of irrelevant other cells in lymph nodes (LNs) is unknown. Here we show that initial T cell activation clusters are generated near high endothelial venules (HEVs) in the outer paracortex of draining LNs by retention of Ag-specific T cells as they exit from HEVs. We further show that tissue-derived DCs preferentially home in the vicinity of HEVs, thus defining the site of cluster generation. At this location DCs efficiently scan all incoming T cells and selectively retain those specific for the major histocompatibility complex–peptide complexes the DCs present. Such strategic positioning of DCs on the entry route of T cells into the paracortex may foster T cell–DC encounter and thus optimize initial T cell activation in vivo.

1998 ◽  
Vol 187 (10) ◽  
pp. 1611-1621 ◽  
Author(s):  
Sarah E. Townsend ◽  
Christopher C. Goodnow

Antigen-specific B cells are implicated as antigen-presenting cells in memory and tolerance responses because they capture antigens efficiently and localize to T cell zones after antigen capture. It has not been possible, however, to visualize the effect of specific B cells on specific CD4+ helper T cells under physiological conditions. We demonstrate here that rare T cells are activated in vivo by minute quantities of antigen captured by antigen-specific B cells. Antigen-activated B cells are helped under these conditions, whereas antigen-tolerant B cells are killed. The T cells proliferate and then disappear regardless of whether the B cells are activated or tolerant. We show genetically that T cell activation, proliferation, and disappearance can be mediated either by transfer of antigen from antigen-specific B cells to endogenous antigen-presenting cells or by direct B–T cell interactions. These results identify a novel antigen presentation route, and demonstrate that B cell presentation of antigen has profound effects on T cell fate that could not be predicted from in vitro studies.


2016 ◽  
Vol 113 (26) ◽  
pp. 7201-7206 ◽  
Author(s):  
Ying S. Hu ◽  
Hu Cang ◽  
Björn F. Lillemeier

T cells become activated when T-cell receptors (TCRs) recognize agonist peptides bound to major histocompatibility complex molecules on antigen-presenting cells. T-cell activation critically relies on the spatiotemporal arrangements of TCRs on the plasma membrane. However, the molecular organizations of TCRs on lymph node-resident T cells have not yet been determined, owing to the diffraction limit of light. Here we visualized nanometer- and micrometer-scale TCR distributions in lymph nodes by light sheet direct stochastic optical reconstruction microscopy (dSTORM) and structured illumination microscopy (SIM). This dSTORM and SIM approach provides the first evidence, to our knowledge, of multiscale reorganization of TCRs during in vivo immune responses. We observed nanometer-scale plasma membrane domains, known as protein islands, on naïve T cells. These protein islands were enriched within micrometer-sized surface areas that we call territories. In vivo T-cell activation caused the TCR territories to contract, leading to the coalescence of protein islands and formation of stable TCR microclusters.


1997 ◽  
Vol 185 (12) ◽  
pp. 2133-2141 ◽  
Author(s):  
Elizabeth Ingulli ◽  
Anna Mondino ◽  
Alexander Khoruts ◽  
Marc K. Jenkins

Although lymphoid dendritic cells (DC) are thought to play an essential role in T cell activation, the initial physical interaction between antigen-bearing DC and antigen-specific T cells has never been directly observed in vivo under conditions where the specificity of the responding T cells for the relevant antigen could be unambiguously assessed. We used confocal microscopy to track the in vivo location of fluorescent dye-labeled DC and naive TCR transgenic CD4+ T cells specific for an OVA peptide–I-Ad complex after adoptive transfer into syngeneic recipients. DC that were not exposed to the OVA peptide, homed to the paracortical regions of the lymph nodes but did not interact with the OVA peptide-specific T cells. In contrast, the OVA peptide-specific T cells formed large clusters around paracortical DC that were pulsed in vitro with the OVA peptide before injection. Interactions were also observed between paracortical DC of the recipient and OVA peptide-specific T cells after administration of intact OVA. Injection of OVA peptide-pulsed DC caused the specific T cells to produce IL-2 in vivo, proliferate, and differentiate into effector cells capable of causing a delayed-type hypersensitivity reaction. Surprisingly, by 48 h after injection, OVA peptide-pulsed, but not unpulsed DC disappeared from the lymph nodes of mice that contained the transferred TCR transgenic population. These results demonstrate that antigen-bearing DC directly interact with naive antigen-specific T cells within the T cell–rich regions of lymph nodes. This interaction results in T cell activation and disappearance of the DC.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3217-3217
Author(s):  
Miles Hamilton Linde ◽  
Christopher G Dove ◽  
Sarah F Gurev ◽  
Paul Phan ◽  
Feifei Zhao ◽  
...  

Precursor B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive hematopoietic neoplasm characterized by recurrent genetic lesions resulting in B-cell maturation arrest and malignant transformation. Even with the addition of targeted therapies to conventional treatment regimens, prognosis for adults with high risk disease remains poor, particularly for those patients with relapsed or refractory disease. Despite an arrest in B cell maturation, we previously showed that human B-ALL blasts retain the capacity for reprogramming to the myeloid lineage (McClellan et al, PNAS 2015). While the concept of forced differentiation was proposed several decades ago, no differentiation therapies have been effective in the treatment of B-ALL. Thus, we sought to investigate the therapeutic implications of myeloid lineage reprogramming of B-ALL cells. We speculated that myeloid-reprogramming of B-ALL cells into antigen presenting cells (APCs) could induce tumor-specific T cell responses through effective presentation of aberrant tumor-associated self-peptides. To test this hypothesis, we generated murine models of B-ALL capable of reprogramming to the myeloid lineage through the inducible expression of two transcription factors, CEBPα and PU.1. Ectopic expression of these factors efficiently reprogrammed B-ALL cells into myeloid-lineage APCs, expressing myeloid markers (CD11b, CD14, CD115, and Ly6C). Reprogramming ablated the tumorigenicity of these cells as they acquired APC characteristics, including phagocytic activity and expression of antigen presentation and co-stimulation molecules: MHC-I (3.13-fold, p=0.0018), MHC-II (8.6-fold, p<0.0001), CD80 (62.1-fold, p<0.0001), CD86 (107.6-fold, p<0.0001), and CD40 (92-fold, p<0.0001). Using chicken ovalbumin as a model antigen and DO11.10 transgenic CD4+ T cells, we demonstrated that reprogrammed B-ALL cells, but not parental blasts, can process and present both endogenous and exogenous peptides for antigen-specific T cell activation. To explore the therapeutic potential of B-ALL reprogramming, we engrafted immunodeficient (NSG) and immunocompetent syngeneic (BALB/c) mice with our B-ALL model and induced myeloid reprogramming in vivo. While B-ALL reprogramming in immunodeficient mice led to a three day extension in median survival (p=0.0016, n= 5 per group), all of the mice succumbed to their disease. Strikingly, B-ALL reprogramming in immunocompetent mice led to complete tumor regression and survival of the entire cohort 100 days post treatment (p<0.0001, n=10 per group), suggesting that reprogramming induced immune-mediated tumor eradication. Importantly, these animals were not susceptible to subsequent B-ALL re-challenge, demonstrating successful generation of durable, systemic, and protective immunity. In order to investigate the mechanism underlying tumor eradication, we depleted BALB/c mice of CD4+ or CD8+ T cells. Depletion of either T cell population abrogated the therapeutic benefit of B-ALL reprogramming, indicating that reprogrammed B-ALL cells stimulate T cell activation in vivo. Further analysis of the CD8 T cell repertoire by TCRVb chain usage revealed significant 10.3-fold (p=0.0109, n=5 per group) expansion of a single TCRVb chain family in response to B-ALL reprogramming, consistent with an oligoclonal T cell response. Following reprogramming, a 4.01-fold increase in the frequency of infiltrating T cells is observed in the bone marrow (p=0.0028), including both activated (CD25+/CD69+) (1.62-fold, p=0.018) and effector memory (CD44+CD62L-) (1.99-fold, p=0.0097) T cells. Finally, using a dual tumor model, we demonstrated that myeloid reprogramming-dependent T cell activation eradicates malignant cells systemically, as demonstrated by regression of contralateral tumors lacking reprogramming. Together, our data suggests that (1) B-ALL cells reprogrammed to the myeloid lineage can operate as potent APCs capable of presenting both endogenous and exogenous tumor-associated antigens, (2) in vivo B-ALL reprogramming elicits robust immune activation, dependent on both CD4+ and CD8+ T cells, and (3) B-ALL reprogramming-induced immune activation is potent, durable, tumor-eradicating, and systemic. Thus, reprogramming of B-ALL cells into APCs represents a novel immunotherapeutic strategy with potential clinical benefit for the management of B-ALL disease progression. Disclosures Majeti: Forty Seven Inc.: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; BioMarin: Consultancy.


2020 ◽  
Vol 6 (50) ◽  
pp. eabd1631
Author(s):  
Weijing Yang ◽  
Hongzhang Deng ◽  
Shoujun Zhu ◽  
Joseph Lau ◽  
Rui Tian ◽  
...  

Artificial antigen-presenting cells (aAPCs) can stimulate CD8+ T cell activation. While nanosized aAPCs (naAPCs) have a better safety profile than microsized (maAPCs), they generally induce a weaker T cell response. Treatment with aAPCs alone is insufficient due to the lack of autologous antigen-specific CD8+ T cells. Here, we devised a nanovaccine for antigen-specific CD8+ T cell preactivation in vivo, followed by reactivation of CD8+ T cells via size-transformable naAPCs. naAPCs can be converted to maAPCs in tumor tissue when encountering preactivated CD8+ T cells with high surface redox potential. In vivo study revealed that naAPC’s combination with nanovaccine had an impressive antitumor efficacy. The methodology can also be applied to chemotherapy and photodynamic therapy. Our findings provide a generalizable approach for using size-transformable naAPCs in vivo for immunotherapy in combination with nanotechnologies that can activate CD8+ T cells.


2008 ◽  
Vol 76 (12) ◽  
pp. 5817-5825 ◽  
Author(s):  
Annalisa Ciabattini ◽  
Elena Pettini ◽  
Peter Andersen ◽  
Gianni Pozzi ◽  
Donata Medaglini

ABSTRACT The primary activation of T-helper and T-cytotoxic cells following mucosal immunization with recombinant Streptococcus gordonii was studied in vivo by adoptive transfer of ovalbumin (OVA)-specific transgenic CD8+ (OT-I) and CD4+ (OT-II) T cells. A recombinant strain, expressing on the surface the vaccine antigen Ag85B-ESAT-6 from Mycobacterium tuberculosis fused to OVA T-helper and T-cytotoxic epitopes (peptides 323 to 339 and 257 to 264), was constructed and used to immunize C57BL/6 mice by the intranasal route. Recombinant, but not wild-type, bacteria induced OVA-specific CD4+ and CD8+ T-cell clonal expansion in cervical lymph nodes, lung, and spleen. OVA-specific CD4+ and CD8+ T-cell proliferation appeared first in cervical lymph nodes and later in the spleen, suggesting a possible migration of activated cells from the inductive site to the systemic district. A significant correlation between the percentages of CD4+ and CD8+ proliferating T cells was observed for each animal. The expression of CD69, CD44, and CD45RB on proliferating T lymphocytes changed as a function of the cell division number, confirming T-cell activation following the antigen encounter. These data indicate that intranasal immunization with recombinant S. gordonii is capable of inducing primary activation of naive antigen-specific CD4+ and CD8+ T cells, both locally and systemically.


2000 ◽  
Vol 191 (2) ◽  
pp. 365-374 ◽  
Author(s):  
Kazuko Murata ◽  
Naoto Ishii ◽  
Hiroshi Takano ◽  
Shigeto Miura ◽  
Lishomwa C. Ndhlovu ◽  
...  

OX40 expressed on activated T cells is known to be an important costimulatory molecule on T cell activation in vitro. However, the in vivo functional significance of the interaction between OX40 and its ligand, OX40L, is still unclear. To investigate the role of OX40L during in vivo immune responses, we generated OX40L-deficient mice and a blocking anti-OX40L monoclonal antibody, MGP34. OX40L expression was demonstrated on splenic B cells after CD40 and anti-immunoglobulin (Ig)M stimulation, while only CD40 ligation was capable of inducing OX40L on dendritic cells. OX40L-deficient and MGP34-treated mice engendered apparent suppression of the recall reaction of T cells primed with both protein antigens and alloantigens and a significant reduction in keyhole limpet hemocyanin–specific IgG production. The impaired T cell priming was also accompanied by a concomitant reduction of both T helper type 1 (Th1) and Th2 cytokines. Furthermore, antigen-presenting cells (APCs) derived from the mutant mice revealed an impaired intrinsic APC function, demonstrating the importance of OX40L in both the priming and effector phases of T cell activation. Collectively, these results provide convincing evidence that OX40L, expressed on APCs, plays a critical role in antigen-specific T cell responses in vivo.


2019 ◽  
Vol 116 (38) ◽  
pp. 19083-19089 ◽  
Author(s):  
Laurence S. C. Lok ◽  
Thomas W. Dennison ◽  
Krishnaa M. Mahbubani ◽  
Kourosh Saeb-Parsy ◽  
Edwin R. Chilvers ◽  
...  

Neutrophils play a key role in innate immunity. As the dominant circulating phagocyte, they are rapidly recruited from the bloodstream to sites of infection or injury to internalize and destroy microbes. More recently, neutrophils have been identified in uninfected organs, challenging the classical view of their function. Here we show that neutrophils were present in lymph nodes (LNs) in homeostasis. Using flow cytometry and confocal imaging, we identified neutrophils within LNs in naive, unchallenged mice, including LNs draining the skin, lungs, and gastrointestinal tract. Neutrophils were enriched within specific anatomical regions, in the interfollicular zone, a site of T cell activation. Intravital two-photon microscopy demonstrated that LN neutrophils were motile, trafficked into LNs from both blood and tissues via high endothelial venules and afferent lymphatics, respectively, and formed interactions with dendritic cells in LNs. Murine and human LN neutrophils had a distinct phenotype compared with circulating neutrophils, with higher major histocompatibility complex II (MHCII) expression, suggesting a potential role in CD4 T cell activation. Upon ex vivo stimulation with IgG immune complex (IC), neutrophils up-regulated expression of MHCII and costimulatory molecules and increased T cell activation. In vivo, neutrophils were capable of delivering circulating IC to LNs, suggesting a broader functional remit. Overall, our data challenge the perception that neutrophil patrol is limited to the circulation in homeostasis, adding LNs to their routine surveillance territory.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A167-A167
Author(s):  
Dylan Drakes ◽  
Abdulraouf Abbas ◽  
Jacqueline Shields ◽  
Peter DeMuth

BackgroundClinical results from TCR-T Cell therapies demonstrate anti-tumor efficacy, although therapeutic benefits remain transient due to suboptimal T Cell functional persistence and tumor infiltration alongside antigen escape mechanisms.1 2 3 4 5 Amphiphile (AMP) vaccines improve lymph node targeting of cancer immunogens, stimulating an enhanced endogenous anti-tumor response.6 7 We describe an approach to generate robust and durable anti-tumor responses by combining AMP lymphatic targeting with TCR-T Cell therapy. AMP cognate peptides traffic to lymph nodes and improve TCR-T Cell activation, persistence, and function compared to soluble (SOL) peptide vaccination or TCR-T Cells alone, inducing a superior anti-tumor effect.MethodsC57BL/6J mice were subcutaneously implanted with B16F10 10 days prior to transduced pmel-1 T cell transfer or 75 days after T cell treatment for rechallenge experiments. Tumor-bearing mice received 5 doses, 2x/week of AMP-GP100/AMP-CpG, SOL-GP100/SOL-CpG, or PBS by tail-base vaccination. Caliper measurements determined tumor progression and overall survival. TCR-T Cell persistence was assessed bi-weekly through retro-orbital bleeds. Tumors and lymph nodes from treated mice were excised and analyzed by Nanostring for differential gene expression and flow cytometry for TCR-T Cell functional persistence and T cell epitope spread. Human T Cells (HTCs) and Dendritic Cells (DCs) were isolated from autologous PBMCs, transduced with KRAS-specific TCRs, and cultured with AMP-KRAS-peptide pulsed DCs before assaying T Cell boosting.ResultsWe demonstrate that AMP vaccination expands tumor specific TCR-T Cells in vivo up to 46-fold while enhancing the activation, cytokine secretion, and pro-inflammatory gene expression of tumor-infiltrating TCR-T Cells. Endogenous tumor-infiltrating T cells from AMP vaccinated mice produced up to 17-fold greater cytokine secretion following re-stimulation with non-targeted tumor epitopes. These results correspond to the eradication of established B16F10 tumors and a resistance to secondary tumor challenge in cured mice. Providing clinical relevance, HTCs transduced with KRAS-specific TCRs and boosted with AMP-KRAS-peptide pulsed DCs exhibited enhanced T cell activation, Th1 cytokine secretion, and cytolytic capacity compared to HTCs exposed to unlabeled DCs.ConclusionsAMP vaccination delivers cognate peptides to lymph nodes providing in vivo activation of tumor-specific TCR-T Cells which amplifies anti-tumor potency of such adoptively transferred cells. AMP vaccination significantly enhanced TCR-T Cell anti-tumor response and led to durable cures of solid tumors in an established, syngeneic tumor model. Additionally, AMP-peptide pulsed autologous DCs enhanced the function of clinically relevant KRAS-specific TCR-T cells in vitro. Taken together, these studies provide direct rationale and evidence for the combination of AMP vaccination with TCR-T Cell therapies to augment clinical responses.ReferencesRobbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011;29:917–924. doi: 10.1200/JCO.2010.32.2537.Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, Badros AZ, Garfall A, Weiss B, Finklestein J, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med 2015;21:914–921. doi: 10.1038/nm.3910.Doran SL, Stevanovic S, Adhikary S, Gartner JJ, Jia L, Kwong MLM, Faquin WC, Hewitt SM, Sherry RM, Yang JC, et al. T-Cell Receptor Gene Therapy for Human Papillomavirus-Associated Epithelial Cancers: A First-in-Human, Phase I/II Study. J Clin Oncol 2019;37:2759–2768. doi: 10.1200/JCO.18.02424.Chandran SS, Klebanoff CA. T cell receptor-based cancer immunotherapy: Emerging efficacy and pathways of resistance. Immunol Rev 2019;290:127–147. doi: 10.1111/imr.12772.D’Angelo SP, Melchiori L, Merchant MS, Bernstein D, Glod J, Kaplan R, Grupp S, Tap WD, Chagin K, Binder GK, et al. Antitumor Activity Associated with Prolonged Persistence of Adoptively Transferred NY-ESO-1 (c259)T Cells in Synovial Sarcoma. Cancer Discov 2018;8:944–957. doi: 10.1158/2159-8290.CD-17-1417.H Liu, KD Moynihan, Y Zheng, GL Szeto, AV Li, B Huang, DS Van Egeren, C Park, DJ Irvine. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 2014;507: 519–522. doi: 10.1038/nature12978.KD Moynihan, CF Opel, GL Szeto, A Tzeng, EF Zhu, JM Engreitz, RT Williams, K Rakhra, MH Zhang, AM Rothschilds, S Kumari, RL Kelly, BH Kwan, W Abraham, K Hu, NK Mehta, MJ Kauke, H Suh, JR Cochran, DA Lauffenburger, KD Wittrup, DJ Irvine. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat Med 2016; 22: 1402–1410. doi: 10.1038/nm.4200.


Sign in / Sign up

Export Citation Format

Share Document