scholarly journals C1q Governs Deposition of Circulating Immune Complexes and Leukocyte Fcγ Receptors Mediate Subsequent Neutrophil Recruitment

2004 ◽  
Vol 200 (7) ◽  
pp. 835-846 ◽  
Author(s):  
Tracy Stokol ◽  
Peter O'Donnell ◽  
Ling Xiao ◽  
Sara Knight ◽  
George Stavrakis ◽  
...  

Inflammation induced by circulating immunoglobulin G–immune complexes (ICs) characterizes many immune-mediated diseases. In this work, the molecular requirements for the deposition of circulating ICs and subsequent acute leukocyte recruitment in mice were elucidated. We show that after intravenous injection, preformed soluble ICs are rapidly deposited in the postcapillary venules of the cremaster microcirculation, secondary to increased vascular permeability. This deposition is dependent on complement C1q. IC deposition is associated with leukocyte recruitment. Leukocyte rolling, which is mediated by P-selectin in the exteriorized cremaster muscle, is not further increased in response to ICs. In contrast, leukocyte rolling velocity is significantly decreased and leukocyte adhesion is significantly increased in the presence of ICs. The IC-mediated slow leukocyte rolling velocity and subsequent adhesion and emigration are dependent on Fcγ receptors (FcγRs), particularly FcγRIII, with complement C3 and C5 having no detectable role. These studies suggest a regulatory mechanism of IC deposition and leukocyte trafficking in IC-mediated inflammation requiring C1q and FcγRs in sequential, noninteracting roles.

1992 ◽  
Vol 263 (3) ◽  
pp. H810-H815 ◽  
Author(s):  
M. A. Perry ◽  
D. N. Granger

The objective of this study was to compare the leukocyte-endothelial cell adhesive interactions elicited in postcapillary venules by either local ischemia-reperfusion or hemorrhage-reperfusion. Leukocyte rolling, adherence, and emigration were monitored in cat mesenteric venules exposed to an 85% reduction in blood flow (induced by either hemorrhage or local restriction of arterial inflow) for 1 h, followed by 1 h reperfusion. Leukocyte-endothelial cell interactions, venular diameter, and red blood cell velocity were measured during baseline, ischemia, and reperfusion periods. Both local and hemorrhage-induced ischemia reperfusion caused a reduction in leukocyte rolling velocity and increases in leukocyte adherence and emigration. Quantitatively, the adherence and emigration responses in both ischemia models were nearly identical. However, the two models differed in their response to immunoneutralization of the leukocyte adhesion glycoprotein CD11/CD18 with monoclonal antibody (MAb) IB4. The MAb had a more profound effect in attenuating leukocyte adherence and emigration in the local ischemia model. These results indicate that different factors may contribute to leukocyte-endothelial cell adhesive interactions observed in local vs. systemic models of ischemia-reperfusion.


2006 ◽  
Vol 291 (5) ◽  
pp. H2116-H2125 ◽  
Author(s):  
Ronen Sumagin ◽  
Ingrid H. Sarelius

The observation that leukocyte-endothelial cell (EC) interactions are localized to specific regions on the microvessel wall suggests that adhesion molecule distribution is not uniform. We investigated ICAM-1 distribution and leukocyte-EC interactions in blood-perfused microvessels (<80 μm) in cremaster muscle of anesthetized mice, using intravital confocal microscopy and immunofluorescent labeling. Variability of ICAM-1 expression directly determines leukocyte adhesion distribution within the venular microcirculation and contributes to leukocyte rolling in arterioles during inflammation. The number of rolling interactions increased with ICAM-1 intensity ( r2 = 0.69, P < 0.05), and rolling velocity was lower in regions of higher ICAM-1 intensity. In controls, venular ICAM-1 expression was approximately twofold higher than in arterioles. After TNF-α treatment, ICAM-1 expression was significantly increased, 2.8 ± 0.2-fold in arterioles and 1.7 ± 0.2-fold in venules ( P < 0.05). ICAM-1 expression on activated arteriolar ECs only reached the level of control venular ICAM-1. Arteriolar but not venular ECs underwent redistribution of ICAM-1 among cells; some cells increased and some decreased ICAM-1 expression, magnifying the variability of ICAM-1. TNF-α treatment increased the length of bright fluorescent regions per unit vessel length (42%, control; 70%, TNF-α) along the arteriolar wall, whereas no significant change was observed in venules (60%, control; 63%, TNF-α). The spatial distribution and expression levels of adhesion molecules in the microcirculation determine the timing and placement of leukocyte interactions and hence significantly impact the inflammatory response. That arteriolar ECs respond to TNF-α by upregulation of ICAM-1, although in a different way compared with venules, suggests an explicit role for arterioles in inflammatory responses.


2002 ◽  
Vol 282 (5) ◽  
pp. L959-L967 ◽  
Author(s):  
Lina H. K. Lim ◽  
Bruce S. Bochner ◽  
Elizabeth M. Wagner

Because of its relative inaccessibility, inflammatory cell extravasation within the airway circulation in vivo has been difficult to investigate in real time. A new method has been established using intravital microscopy in the anesthetized rat to visualize leukocytes in superficial postcapillary venules of the trachea. This technique has been validated using local superfusion of lipopolysaccharide (LPS) and N-formyl-methionyl-leucyl-phenylalanine (FMLP). Basal leukocyte rolling velocity (55.4 ± 9.3 μm/s) and adhesion (1.4 ± 0.3 cells/100 μm) were monitored in postcapillary venules (33.9 ± 1.3 μm diameter). At all time points up to 90 min, these parameters were unaltered in control rats ( n= 7). In contrast, vessels exposed to 1 μg/ml of LPS ( n = 6) exhibited a 57% reduction in leukocyte rolling velocity and an increase in the number of adherent cells (4.7 ± 1 cells/100 μm, P < 0.05). Superfusion with 0.1 μM of FMLP ( n = 6) also resulted in a 45% reduction in rolling velocity and an increase in adherent cells (4 ± 0.7 cells/100 μm, P < 0.05). Histological evaluation confirmed local stimulus-induced leukocyte extravasation. These results demonstrate leukocyte recruitment in the airway microvasculature and provide an important new method to study airway inflammation in real time.


Blood ◽  
2002 ◽  
Vol 99 (1) ◽  
pp. 336-341 ◽  
Author(s):  
Jessica L. Dunne ◽  
Christie M. Ballantyne ◽  
Arthur L. Beaudet ◽  
Klaus Ley

Previously it was shown that β2-integrins are necessary for slow leukocyte rolling in inflamed venules. In this study, mice that are deficient for either one of the β2-integrins, αLβ2 (LFA-1) or αMβ2 (Mac-1), were used to determine which of the β2-integrins are responsible for slowing rolling leukocytes. The cremaster muscles of these mice were treated with tumor necrosis factor-α and prepared for intravital microscopy. The average rolling velocities in venules were elevated in LFA-1−/−mice (11.0 ± 0.7 μm/s) and Mac-1−/− mice (10.1 ± 1.1 μm/s) compared to wild-type mice (4.8 ± 0.3 μm/s;P &lt; .05), but were lower than in CD18−/−mice (28.5 ± 2.1 μm/s). When both LFA-1 and Mac-1 were absent or blocked, rolling velocity became dependent on shear rate and approached that of CD18−/− mice. In addition, leukocyte adhesion efficiency was decreased in LFA-1−/− mice to near CD18−/− levels, but decreased only slightly in Mac-1−/− mice. Thus, both LFA-1 and Mac-1 contribute to slowing down rolling leukocytes, although LFA-1 is more important than Mac-1 in efficiently inducing firm adhesion.


1994 ◽  
Vol 266 (2) ◽  
pp. H637-H642 ◽  
Author(s):  
J. P. Gaboury ◽  
D. C. Anderson ◽  
P. Kubes

Intravital microscopy was used to monitor leukocyte adherence, flux, rolling velocity, and number of rolling leukocytes (flux/velocity) in venules 25–40 microns in diameter. The superoxide-generating system, hypoxanthine and xanthine oxidase (HX/XO), was infused into the mesenteric circulation in untreated animals or in animals pretreated with either catalase (a hydrogen peroxide scavenger), WEB-2086 [a platelet-activating factor (PAF) receptor antagonist], or monoclonal antibodies directed against adhesion molecules CD18 (CL26) or P-selectin (PB1.3). HX/XO infusion caused a decrease in leukocyte rolling velocity and an increase in the number of rolling and adherent leukocytes. WEB-2086 prevented the increase in leukocyte adhesion and markedly increased leukocyte rolling velocity. PB1.3 abolished the HX/XO-associated rise in the flux of rolling leukocytes and proportionally decreased the number of adherent leukocytes. CL26 abolished HX/XO-induced leukocyte adhesion and also reduced the number of rolling leukocytes. In conclusion, P-selectin mediates the increased leukocyte flux induced by superoxide, whereas PAF and CD18 modulate leukocyte adhesion. PAF also reduces leukocyte rolling velocity, possibly as a result of CD18, but not P-selectin.


2003 ◽  
Vol 284 (1) ◽  
pp. H133-H140 ◽  
Author(s):  
Alyson J. Prorock ◽  
Ali Hafezi-Moghadam ◽  
Victor E. Laubach ◽  
James K. Liao ◽  
Klaus Ley

Estrogen increases nitric oxide (NO) production by inducing the activity of endothelial NO synthase (eNOS) (Simoncini et al. Nature 407: 538, 2000). Ischemia (30 min) and reperfusion (I/R) increased the number of adherent leukocytes and decreased their rolling velocities in mouse cremaster muscle venules with a strong dependence on wall shear rate. Minimum rolling velocity at ∼5 min after the onset of reperfusion was accompanied by increased P-selectin expression. This preceded the peak in leukocyte adhesion (at 10–15 min). In untreated wild-type mice, I/R caused a decrease of leukocyte rolling velocity from 37 to 26 μm/s and a 2.0-fold increase in leukocyte adhesion. Both were completely abolished by 0.25 mg ip estrogen 1 h before surgery. In eNOS−/− mice, the decrease of leukocyte rolling velocity and increase in adhesion were similar but were only marginally improved by estrogen. We conclude that the protective effect of estrogen, as measured by leukocyte rolling and adhesion, is significantly reduced in eNOS−/− mice, suggesting that induction of eNOS activity is the major mechanism of vasoprotection by estrogen in this model.


2004 ◽  
Vol 287 (1) ◽  
pp. G115-G124 ◽  
Author(s):  
Emile M. Rijcken ◽  
Mike G. Laukoetter ◽  
Christoph Anthoni ◽  
Stephanie Meier ◽  
Rudolf Mennigen ◽  
...  

Recruitment of circulating leukocytes into the colonic tissue is a key feature of intestinal inflammation. P-selectin glycoprotein ligand-1 (PSGL-1) and very late antigen-4 (VLA-4) are expressed on leukocytes and play an important role in leukocyte-endothelial cell adhesive interactions. We examined the effects of immunoneutralization of PSGL-1 and VLA-4 on leukocyte recruitment in vivo in the development and treatment of experimental colitis. Chronic colitis was induced in balb/c mice by oral administration of dextran sodium sulfate (DSS). Monoclonal antibodies 2PH1 (anti-PSGL-1) and PS/2 (anti-VLA-4) or the combination of both were injected intravenously, and leukocyte adhesion was observed for 60 min in colonic submucosal venules by intravital microscopy (IVM) under isoflurane/N2O anesthesia. In addition, mice with established colitis were treated by daily intraperitoneal injections of 2PH1, PS/2, or the combination of both over 5 days. Disease activity index (DAI), histology, and myeloperoxidase (MPO) levels were compared with sham-treated DSS controls. We found that 2PH1 reduced the number of rolling leukocytes (148.7 ± 29.8 vs. 36.9 ± 8.7/0.01 mm2/30 s, P < 0.05), whereas leukocyte velocity was increased (24.0 ± 3.6 vs. 127.8 ± 11.7 μm/s, P < 0.05). PS/2 reduced leukocyte rolling to a lesser extent. Leukocyte firm adhesion was not influenced by 2PH1 but was strongly reduced by PS/2 (24.1 ± 2 vs. 4.4 ± 0.9/0.01 mm2/30 s, P < 0.05). Combined application did not cause additional effects on leukocyte adhesion. Treatment of chronic colitis with 2PH1 or PS/2 reduced DAI, mucosal injury, and MPO levels significantly. Combined treatment led to a significantly better reduction of DAI (0.4 ± 0.1 vs. 2.1 ± 0.2 points) and histology (9.7 ± 0.9 vs. 21.4 ± 4.6 points). In conclusion, PSGL-1 and VLA-4 play an important role for leukocyte recruitment during intestinal inflammation. Therapeutic strategies designed to disrupt interactions mediated by PSGL-1 and/or VLA-4 may prove beneficial in treatment of chronic colitis.


1992 ◽  
Vol 262 (5) ◽  
pp. G903-G908 ◽  
Author(s):  
H. Asako ◽  
P. Kubes ◽  
J. Wallace ◽  
T. Gaginella ◽  
R. E. Wolf ◽  
...  

Although the pathogenetic mechanisms underlying indomethacin-induced mucosal injury remain undefined, the results from recent studies suggest that leukocyte adherence in gastric microvessels may be an important component of this injury process. The objective of this study was to determine whether clinically relevant plasma concentrations of indomethacin promote leukocyte-endothelial cell adhesive interactions in postcapillary venules. Erythrocyte velocity, vessel diameter, leukocyte rolling velocity, and the number of adherent (stationary for greater than or equal to 30 s) and emigrated leukocytes were measured in rat mesenteric venules. Repeat measurements of all parameters were obtained within 20 min after addition of either 2.5 or 25 micrograms/ml indomethacin to the mesenteric superfusate. In some experiments, rats were pretreated with either a leukotriene (LT) synthesis inhibitor (L 663,536), an LTD4 (MK-571) or LTB4 (SC 41930) receptor antagonist, misoprostol, or prostacyclin (PGI2). Indomethacin alone increased the number of adherent leukocytes, reduced both leukocyte rolling velocity and venular shear rate, but did not promote leukocyte emigration. L 663,536 and SC 41930 prevented all of the adhesive and hemodynamic alterations induced by indomethacin; misoprostol and PGI2, but not MK-571, exerted similar beneficial effects. These results indicate that indomethacin promotes leukocyte adherence in postcapillary venules through an LTB4-dependent mechanism.


2001 ◽  
Vol 193 (7) ◽  
pp. 863-872 ◽  
Author(s):  
Ali Hafezi-Moghadam ◽  
Kennard L. Thomas ◽  
Alyson J. Prorock ◽  
Yuqing Huo ◽  
Klaus Ley

The physiologic role of L-selectin shedding is unknown. Here, we investigate the effect of L-selectin shedding on firm adhesion and transmigration. In a tumor necrosis factor α–induced model of inflammation, inhibition of L-selectin shedding significantly increased firm adhesion and transmigration by a lymphocyte function–associated antigen (LFA)-1 and intercellular adhesion molecule (ICAM)-1–dependent mechanism. We examined the quality of leukocyte rolling and L-selectin–mediated signaling. Blockade of L-selectin shedding significantly reduced the “jerkiness” of leukocyte rolling, defined as the variability of velocity over time. A low level of jerkiness was also observed in the rolling of microbeads conjugated with L-selectin, a model system lacking the mechanism for L-selectin shedding. Inhibition of L-selectin shedding potentiated activation of LFA-1 and Mac-1 induced by L-selectin cross-linking as shown by activation epitope expression and binding of ICAM-1–conjugated beads. We conclude that inhibition of L-selectin shedding increases leukocyte adhesion and transmigration by (a) increasing leukocyte exposure to the inflamed endothelium by decreasing jerkiness and (b) promoting leukocyte activation by outside-in signaling. These observations help to resolve the apparent discrepancy between the minor contribution of L-selectin to rolling and the significant leukocyte recruitment defect in L-selectin knockout mice.


2002 ◽  
Vol 282 (2) ◽  
pp. H636-H644 ◽  
Author(s):  
M. Michele Mariscalco ◽  
Wilfredo Vergara ◽  
Jia Mei ◽  
E. O'Brian Smith ◽  
C. Wayne Smith

Delays in leukocyte localization likely contribute to diminished host defense in neonates. Understanding the processes that may be affected has been hampered by the lack of suitable developmental models. Using intravital microscopy, we directly examine leukocyte recruitment in a rabbit pup model. In response to intraperitoneal interleukin (IL)-1β, there were one-third as many leukocytes that arrested in pup mesenteric vessels and emigrated compared with adult vessels, although leukocyte flux was not different. Leukocyte rolling velocity in pups was one-half that in adults. In response to surgical trauma alone, the number of arrested pup cells was 15% that of adult cells, although again leukocyte flux was not different. An anti-L-selectin antibody inhibited rolling significantly by 60 min for both pups and adults. The effect on arrest and emigration occurred at significantly earlier times, although the effect was less in rabbit pups. A primary defect in leukocyte emigration in the rabbit pup appears to be a failure of the cell to transition efficiently from rolling to arrest. L-selectin-dependent adhesion and emigration are decreased, rolling is not, suggesting that at least part of the defect is due to events downstream of the initial tether.


Sign in / Sign up

Export Citation Format

Share Document