scholarly journals B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil

2005 ◽  
Vol 201 (12) ◽  
pp. 2011-2021 ◽  
Author(s):  
Bodil Kavli ◽  
Sonja Andersen ◽  
Marit Otterlei ◽  
Nina B. Liabakk ◽  
Kohsuke Imai ◽  
...  

The generation of high-affinity antibodies requires somatic hypermutation (SHM) and class switch recombination (CSR) at the immunoglobulin (Ig) locus. Both processes are triggered by activation-induced cytidine deaminase (AID) and require UNG-encoded uracil-DNA glycosylase. AID has been suggested to function as an mRNA editing deaminase or as a single-strand DNA deaminase. In the latter model, SHM may result from replicative incorporation of dAMP opposite U or from error-prone repair of U, whereas CSR may be triggered by strand breaks at abasic sites. Here, we demonstrate that extracts of UNG-proficient human B cell lines efficiently remove U from single-stranded DNA. In B cell lines from hyper-IgM patients carrying UNG mutations, the single-strand–specific uracil-DNA glycosylase, SMUG1, cannot complement this function. Moreover, the UNG mutations lead to increased accumulation of genomic uracil. One mutation results in an F251S substitution in the UNG catalytic domain. Although this UNG form was fully active and stable when expressed in Escherichia coli, it was mistargeted to mitochondria and degraded in mammalian cells. Our results may explain why SMUG1 cannot compensate the UNG2 deficiency in human B cells, and are fully consistent with the DNA deamination model that requires active nuclear UNG2. Based on our findings and recent information in the literature, we present an integrated model for the initiating steps in CSR.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1528-1528 ◽  
Author(s):  
Laura Pasqualucci ◽  
Roberta Guglielmino ◽  
Sami N. Malek ◽  
Urban Novak ◽  
Mara Compagno ◽  
...  

Abstract Genomic instability is a driving force in tumor development that can be achieved by a variety of mechanisms, such as defective chromosome segregation or inactivation of the DNA mismatch repair pathway. Although B-cell lymphomas are associated with chromosomal translocations deregulating oncogene expression, a mechanism for genome-wide instability during lymphomagenesis has long not been described. We have reported that the somatic hypermutation process (SHM), which normally targets the immunoglobulin variable region (IgV) and BCL6 genes in germinal center (GC) B-cells, functions aberrantly in >50% of diffuse large B-cell lymphoma (DLBCL), the most common type of B-cell non-Hodgkin lymphoma (Pasqualucci et al., Nature412:341, 2001). As a consequence, multiple somatic mutations are introduced into the 5′ region of genes that do not represent physiologic SHM targets, including known proto-oncogenes such as PIM1, PAX5, RhoH/TTF and cMYC. To further define the extent of this phenomenon, termed aberrant somatic hypermutation (ASHM), and to identify additional hypermutated loci of possible pathogenetic significance in DLBCL, we screened 113 genes for the presence of mutations affecting their 5′ sequences (≥1.3 Kb from the transcription start site, the target region for SHM) in 10 DLBCL cell lines. Fifteen genes (13.3%) were found to harbor a significant number of mutations (p<0.05), with 70% of the cell lines being mutated in 7 or more genes; among these, six B-cell specific loci -BCL7A, CIITA, IRF4, LRMP, NCOA3 and SIAT1- carried 9–53 mutational events distributed in 20 to 70% of the cases, corresponding to an overall mutation frequency of 0.032–0.15% (frequency in the mutated cases: 0.07–0.25%). The same genes were found hypermutated in a panel of 20 primary DLBCL biopsies, which displayed an overall mutation load of 7 to 45 distinct events/gene (total N=125). Mutations were of somatic origin, independent of chromosomal translocations to the Ig loci and were restricted to the first 1.5–2 Kb from the promoter. In addition, analogous to previously identified SHM and ASHM targets, the mutations exhibited characteristic features, including a bias for transitions over transversions, preferential hotspot (RGYW/WRCY motifs) targeting, and higher frequencies at G:C pairs. However, in contrast to physiologic SHM targets such as IgV and BCL6, none of the 4 newly identified hypermutated genes that have been analyzed so far (BCL7A, CIITA, SIAT1, LRMP) displayed significant levels of mutations in purified normal GC B-cells as well as in other B-cell malignancies. This finding indicates that these genes represent aberrant hypermutation targets resulting from a tumor-associated malfunction, possibly a loss of target specificity of the physiologic SHM process. Considering previous results and the present survey, 17 (13%) out of 130 genes investigated have been found involved in ASHM, suggesting that this aberrant activity may involve an extensive set of target genes in DLBCL. Since the mutations affect both regulatory and coding sequences of the targeted genes, aberrant SHM may represent a major contributor to the pathogenesis of this disease and may explain in part its phenotypic and clinical heterogeneity.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 22-22 ◽  
Author(s):  
April Chiu ◽  
Xugang Qiao ◽  
Bing He ◽  
Elizabeth Hyjjek ◽  
Joong Lee ◽  
...  

Abstract Introduction. B cell-activating factor of the TNF family (BAFF) and a proliferation-inducing ligand (APRIL), a BAFF-related molecule, play a key role in the survival and proliferation of mature B cells. In addition, BAFF and APRIL cooperate with IL-4 to induce class switch DNA recombination (CSR) from IgM (or IgG) to IgG, IgA or IgE. This process requires activation-induced-cytidine deaminase (AID), a DNA-editing enzyme involved also in Ig somatic hypermutation and lymphomagenesis. BAFF and APRIL are usually produced by myeloid cells, including dendritic cells, macrophages and granulocytes, and engage three receptors preferentially expressed on B cells, including transmembrane activator and calcium modulator and cyclophylin ligand interactor (TACI), B cell maturation antigen (BCMA), and BAFF receptor (BAFF-R). Our previous studies show that BAFF and APRIL are EBV-inducible molecules implicated in B cell non-Hodgkin’s lymphoma (NHL). The scope of the present studies was to elucidate the expression and function of BAFF, APRIL, TACI, BCMA and BAFF-R in Hodgkin lymphoma (HL). Methods. Tissue sections from 5 primary EBV+ HL cases and 5 primary EBV− HL cases were analyzed for BAFF, APRIL, TACI, BCMA, and BAFF-R expression through immunohistochemistry. RS cells from 6 primary cases were microdissected and analyzed for the expression of AID and CSR byproducts by RT-PCR. The expression of BAFF, APRIL, TACI, BCMA, BAFF-R, AID, and CSR byproducts was also analyzed in 5 HL cell lines cultured in the presence or absence of recombinant BAFF, APRIL and cytokines as previously described1,2,3. Results. We found that the reactive infiltrate of primary HL tumors comprises non-malignant elements, such as macrophages, granulocytes and plasma cells, expressing BAFF and APRIL. Also a variable proportion of malignant CD30+ Reed-Sternberg (RS) cells from both EBV+ and EBV− HL cases express BAFF and APRIL. Unlike NHL B cells, which usually express BAFF-R, primary RS cells and RS cell lines lack BAFF-R, but express TACI and BCMA. In the presence of BAFF or APRIL, RS cell lines are rescued from spontaneous or induced apoptosis. This effect is associated with activation of NF-κB through a classical pathway. Increased RS cell survival is also associated with up-regulation of the pro-survival BCL-2 and BCL-XL proteins, and down-regulation of the pro-apoptotic BAX protein. Finally, in the presence of BAFF or APRIL and IL-4, RS cell lines up-regulate AID expression and increase their spontaneous CSR activity. Of note, AID expression extends to primary RS cells and is associated with ongoing CSR. Conclusions. Our studies indicate that BAFF and APRIL stimulate malignant RS cells through both autocrine and paracrine pathways. Engagement of TACI and BCMA receptors by BAFF and APRIL may enhance the expansion of RS cells by attenuating apoptosis through a mechanism involving NF-κB and BCL family proteins. By up-regulating AID, signals emanating from TACI and BCMA receptors might also introduce genomic instability. Finally, considering that TACI, BCMA and AID are B cell-specific molecules and that CSR is a process confined to B cells, our findings consolidate the notion that RS cells derive from a B cell precursor.


Blood ◽  
2009 ◽  
Vol 113 (16) ◽  
pp. 3706-3715 ◽  
Author(s):  
Nancy S. Longo ◽  
Patricia L. Lugar ◽  
Sule Yavuz ◽  
Wen Zhang ◽  
Peter H. L. Krijger ◽  
...  

Abstract Subjects with X-linked hyper-IgM syndrome (X-HIgM) have a markedly reduced frequency of CD27+ memory B cells, and their Ig genes have a low level of somatic hypermutation (SHM). To analyze the nature of SHM in X-HIgM, we sequenced 209 nonproductive and 926 productive Ig heavy chain genes. In nonproductive rearrangements that were not subjected to selection, as well as productive rearrangements, most of the mutations were within targeted RGYW, WRCY, WA, or TW motifs (R = purine, Y = pyrimidine, and W = A or T). However, there was significantly decreased targeting of the hypermutable G in RGYW motifs. Moreover, the ratio of transitions to transversions was markedly increased compared with normal. Microarray analysis documented that specific genes involved in SHM, including activation-induced cytidine deaminase (AICDA) and uracil-DNA glycosylase (UNG2), were up-regulated in normal germinal center (GC) B cells, but not induced by CD40 ligation. Similar results were obtained from light chain rearrangements. These results indicate that in the absence of CD40-CD154 interactions, there is a marked reduction in SHM and, specifically, mutations of AICDA-targeted G residues in RGYW motifs along with a decrease in transversions normally related to UNG2 activity.


Blood ◽  
1990 ◽  
Vol 76 (11) ◽  
pp. 2311-2320 ◽  
Author(s):  
FM Lemoine ◽  
S Dedhar ◽  
GM Lima ◽  
CJ Eaves

Abstract Marrow stromal elements produce as yet uncharacterized soluble growth factors that can stimulate the proliferation of murine pre-B cells, although close contact between these two cell types appears to ensure a better pre-B cell response. We have now shown that freshly isolated normal pre-B cells (ie, the B220+, surface mu- fraction of adult mouse bone marrow) adhere to fibronectin (FN) via an RGD cell-attachment site, as shown in a serum-free adherence assay, and they lose this functional ability on differentiation in vivo into B cells (ie, the B220+, surface mu+ fraction). Similarly, cells from an immortalized but stromal cell-dependent and nontumorigenic murine pre-B cell line originally derived from a Whitlock-Witte culture were also found to adhere to fibronectin (FN) via an RGD cell-attachment site. Moreover, in the presence of anti-FN receptor antibodies, the ability of this immortalized pre-B cell line to proliferate when co-cultured with a supportive stromal cell line (M2–10B4 cells) was markedly reduced (down to 30% of control). This suggests that pre-B cell attachment to FN on stromal cells may be an important component of the mechanism by which stromal cells stimulate normal pre-B cell proliferation and one that is no longer operative to control their more differentiated progeny. Two differently transformed pre-B cell lines, both of which are autocrine, stromal-independent, tumorigenic in vivo, and partially or completely differentiation-arrested at a very early stage of pre-B cell development, did not bind to FN. In addition, anti-FN receptor antibodies were much less effective in diminishing the ability of these tumorigenic pre-B cells to respond to M2–10B4 cell stimulation, which could still be demonstrated when the tumorigenic pre-B cells were co- cultured with M2–10B4 cells at a sufficiently low cell density. Analysis of cell surface molecules immunoprecipitated from both the nontumorigenic and tumorigenic pre-B cell lines by an anti-FN receptor antibody showed an increase in very late antigen (VLA) alpha chain(s) in both tumorigenic pre-B cell lines and a decrease in the beta 1 chain in one. Interestingly, all of the pre-B cell lines expressed similar amounts of messenger RNA for the beta 1 chain of the FN receptor. These results suggest that alteration of FN receptor expression on pre-B cells may represent a mechanism contributing to the outgrowth of leukemic pre-B cells with an autocrine phenotype and capable of stromal cell-independent, autonomous growth.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Lisa Grossman ◽  
Chris Chang ◽  
Joanne Dai ◽  
Pavel A. Nikitin ◽  
Dereje D. Jima ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out. Epstein-Barr virus (EBV), an oncogenic herpesvirus, infects and transforms primary B cells into immortal lymphoblastoid cell lines (LCLs), providing a model for EBV-mediated tumorigenesis. EBV transformation stimulates robust homotypic aggregation, indicating that EBV induces molecules that mediate cell-cell adhesion. We report that EBV potently induced expression of the adhesion molecule CD226, which is not normally expressed on B cells. We found that early after infection of primary B cells, EBV promoted an increase in CD226 mRNA and protein expression. CD226 levels increased further from early proliferating EBV-positive B cells to LCLs. We found that CD226 expression on B cells was independent of B-cell activation as CpG DNA failed to induce CD226 to the extent of EBV infection. CD226 expression was high in EBV-infected B cells expressing the latency III growth program, but low in EBV-negative and EBV latency I-infected B-lymphoma cell lines. We validated this correlation by demonstrating that the latency III characteristic EBV NF-κB activator, latent membrane protein 1 (LMP1), was sufficient for CD226 upregulation and that CD226 was more highly expressed in lymphomas with increased NF-κB activity. Finally, we found that CD226 was not important for LCL steady-state growth, survival in response to apoptotic stress, homotypic aggregation, or adhesion to activated endothelial cells. These findings collectively suggest that EBV induces expression of a cell adhesion molecule on primary B cells that may play a role in the tumor microenvironment of EBV-associated B-cell malignancies or facilitate adhesion in the establishment of latency in vivo. IMPORTANCE Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out.


Blood ◽  
2009 ◽  
Vol 114 (20) ◽  
pp. 4503-4506 ◽  
Author(s):  
Anja Mottok ◽  
Christoph Renné ◽  
Marc Seifert ◽  
Elsie Oppermann ◽  
Wolf Bechstein ◽  
...  

Abstract STATs are constitutively activated in several malignancies. In primary mediastinal large B-cell lymphoma and Hodgkin lymphoma (HL), inactivating mutations in SOCS1, an inhibitor of JAK/STAT signaling, contribute to deregulated STAT activity. Based on indications that the SOCS1 mutations are caused by the B cell–specific somatic hypermutation (SHM) process, we analyzed B-cell non-HL and normal B cells for mutations in SOCS1. One-fourth of diffuse large B-cell lymphoma and follicular lymphomas carried SOCS1 mutations, which were preferentially targeted to SHM hotspot motifs and frequently obviously inactivating. Rare mutations were observed in Burkitt lymphoma, plasmacytoma, and mantle cell lymphoma but not in tumors of a non–B-cell origin. Mutations in single-sorted germinal center B cells were infrequent relative to other genes mutated as byproducts of normal SHM, indicating that SOCS1 inactivation in primary mediastinal large B-cell lymphoma, HL, diffuse large B-cell lymphoma, and follicular lymphoma is frequently the result of aberrant SHM.


1990 ◽  
Vol 10 (7) ◽  
pp. 3562-3568
Author(s):  
M Principato ◽  
J L Cleveland ◽  
U R Rapp ◽  
K L Holmes ◽  
J H Pierce ◽  
...  

Murine bone marrow cells infected with replication-defective retroviruses containing v-raf alone or v-myc alone yielded transformed pre-B cell lines, while a retroviral construct containing both v-raf and v-myc oncogenes produced clonally related populations of mature B cells and mature macrophages. The genealogy of these transformants demonstrates that mature myeloid cells were derived from cells with apparent B-lineage commitment and functional immunoglobulin rearrangements. This system should facilitate studies of developmental relationships in hematopoietic differentiation and analysis of lineage determination.


2021 ◽  
Vol 12 ◽  
Author(s):  
Han Sun ◽  
Hu-Qin Yang ◽  
Kan Zhai ◽  
Zhao-Hui Tong

B cells play vital roles in host defense against Pneumocystis infection. However, the features of the B cell receptor (BCR) repertoire in disease progression remain unclear. Here, we integrated single-cell RNA sequencing and single-cell BCR sequencing of immune cells from mouse lungs in an uninfected state and 1–4 weeks post-infection in order to illustrate the dynamic nature of B cell responses during Pneumocystis infection. We identified continuously increased plasma cells and an elevated ratio of (IgA + IgG) to (IgD + IgM) after infection. Moreover, Pneumocystis infection was associated with an increasing naïve B subset characterized by elevated expression of the transcription factor ATF3. The proportion of clonal expanded cells progressively increased, while BCR diversity decreased. Plasma cells exhibited higher levels of somatic hypermutation than naïve B cells. Biased usage of V(D)J genes was observed, and the usage frequency of IGHV9-3 rose. Overall, these results present a detailed atlas of B cell transcriptional changes and BCR repertoire features in the context of Pneumocystis infection, which provides valuable information for finding diagnostic biomarkers and developing potential immunotherapeutic targets.


Blood ◽  
1999 ◽  
Vol 94 (4) ◽  
pp. 1382-1392 ◽  
Author(s):  
Joseph M. Tuscano ◽  
Agostino Riva ◽  
Salvador N. Toscano ◽  
Thomas F. Tedder ◽  
John H. Kehrl

Abstract CD22 is a B-cell–specific adhesion molecule that modulates BCR-mediated signal transduction. Ligation of human CD22 with monoclonal antibodies (MoAbs) that block the ligand binding site triggers rapid tyrosine phosphorylation of CD22 and primary B-cell proliferation. Because extracellular signal-regulated kinases (ERKs) couple upstream signaling pathways to gene activation and are activated by B-cell antigen receptor (BCR) signaling, we examined whether CD22 ligation also activated ERKs and/or modified BCR-induced ERK activation. Ligation of CD22 on either primary B cells or B-cell lines failed to significantly activate the mitogen activated protein kinase (MAPK) ERK-2, but did activate the stress-activated protein kinases (SAPKs; c-jun NH2-terminal kinases or JNKs). In contrast, BCR ligation resulted in ERK-2 activation without significant SAPK activation. Concurrent ligation of CD22 and BCR enhanced BCR-mediated ERK-2 activation without appreciably modulating CD22-induced SAPK activation. Consistent with its induction of SAPK activity, there was a marked increase in nuclear extracts of activator protein-1 (AP-1) and c-jun levels within 2 hours of exposure of primary B cells to the CD22 MoAb. Despite their differences in ERK activation, both CD22 and BCR ligation triggered several Burkitt lymphoma cell lines to undergo apoptosis, and the 2 stimuli together induced greater cell death than either signal alone. The pro-apoptotic effects were CD22-blocking MoAb-specific and dose-dependent. Examination of expression levels of Bcl-2 protoncogene family members (Bcl-2, Bcl-xL, Mcl-1, and Bax) showed a downregulation of Bcl-xL and Mcl-1 after CD22 ligation. This study provides a plausible mechanism to explain how CD22 and BCR signaling can costimulate B-cell proliferation and induce apoptosis in Burkitt lymphoma cell lines.


Sign in / Sign up

Export Citation Format

Share Document