scholarly journals The timing of TCRα expression critically influences T cell development and selection

2005 ◽  
Vol 202 (1) ◽  
pp. 111-121 ◽  
Author(s):  
Troy A. Baldwin ◽  
Michelle M. Sandau ◽  
Stephen C. Jameson ◽  
Kristin A. Hogquist

Sequential rearrangement of the T cell receptor for antigen (TCR) β and α chains is a hallmark of thymocyte development. This temporal control is lost in TCR transgenics because the α chain is expressed prematurely at the CD4−CD8− double negative (DN) stage. To test the importance of this, we expressed the HYα chain at the physiological CD4+CD8+ double positive (DP) stage. The reduced DP and increased DN cellularity typically seen in TCR transgenics was not observed when the α chain was expressed at the appropriate stage. Surprisingly, antigen-driven selection events were also altered. In male mice, thymocyte deletion now occurred at the single positive or medullary stage. In addition, no expansion of CD8αα intestinal intraepithelial lymphocytes (IELs) was observed, despite the fact that HY transgenics have been used to model IEL development. Collectively, these data establish the importance of proper timing of TCR expression in thymic development and selection and emphasize the need to use models that most accurately reflect the physiologic process.

2015 ◽  
Vol 35 (22) ◽  
pp. 3854-3865 ◽  
Author(s):  
Kristy R. Stengel ◽  
Yue Zhao ◽  
Nicholas J. Klus ◽  
Jonathan F. Kaiser ◽  
Laura E. Gordy ◽  
...  

Hdac3 is a key target for Hdac inhibitors that are efficacious in cutaneous T cell lymphoma. Moreover, the regulation of chromatin structure is critical as thymocytes transition from an immature cell with open chromatin to a mature T cell with tightly condensed chromatin. To define the phenotypes controlled by Hdac3 during T cell development, we conditionally deletedHdac3using theLck-Cretransgene. This strategy inactivatedHdac3in the double-negative stages of thymocyte development and caused a significant impairment at the CD8 immature single-positive (ISP) stage and the CD4/CD8 double-positive stage, with few mature CD4+or CD8+single-positive cells being produced. WhenHdac3−/−mice were crossed withBcl-xL-,Bcl2-, orTCRβ-expressing transgenic mice, a modest level of complementation was found. However, when the null mice were crossed with mice expressing a fully rearranged T cell receptor αβ transgene, normal levels of CD4 single-positive cells were produced. Thus, Hdac3 is required for the efficient transit from double-negative stage 4 through positive selection.


2018 ◽  
Vol 46 (4) ◽  
pp. 441-449
Author(s):  
Sowmya Angusamy ◽  
Tamer Mansour ◽  
Mohammed Abdulmageed ◽  
Rachel Han ◽  
Brian C. Schutte ◽  
...  

Abstract Background: The adaptive immune system of neonates is relatively underdeveloped. The thymus is an essential organ for adaptive T cell development and might be affected during the natural course of oxygen induced lung injury. The effect of prolonged hyperoxia on the thymus, thymocyte and T cell development, and its proliferation has not been studied extensively. Methods: Neonatal mice were exposed to 85% oxygen (hyperoxia) or room air (normoxia) up to 28 days. Flow cytometry using surface markers were used to assay for thymocyte development and proliferation. Results: Mice exposed to prolonged hyperoxia had evidence of lung injury associated alveolar simplification, a significantly lower mean weight, smaller thymic size, lower mean thymocyte count and higher percentage of apoptotic thymocytes. T cells subpopulation in the thymus showed a significant reduction in the count and proliferation of double positive and double negative T cells. There was a significant reduction in the count and proliferation of single positive CD4+ and CD8+ T cells. Conclusions: Prolonged hyperoxia in neonatal mice adversely affected thymic size, thymocyte count and altered the distribution of T cells sub-populations. These results are consistent with the hypothesis that prolonged hyperoxia causes defective development of T cells in the thymus.


1992 ◽  
Vol 2 (2) ◽  
pp. 95-101 ◽  
Author(s):  
Cees de Heer ◽  
Bernard de Geus ◽  
Henk-Jan Schuurma ◽  
Henk Van Loveren ◽  
Jan Rozing

T-cell receptor (TCR)ß-chain usage and expression of the CD3, CD4, and CD8 differentiation antigens were analyzed in 14 spontaneous AKR lymphomas. Lymphoma cells massively infiltrated and/or proliferated in the organs analyzed (thymus, spleen, and mesenteric lymph nodes), giving rise to a loss of organ structure. One lymphoma occurred only in the thymus, and failed to express CD3, CD4, and CD8. All other lymphomas expressed the CD3/TCR complex. With respect to CD4 and CD8 expression, the lymphomas were either double-negative (DN), double-positive (DP), or single-positive (SP). The frequency of DP (CD4+8+) lymphomas was low compared to the frequency of DP thymocytes in a normal AKR thymus. A substantial heterogeneity was seen in the intensity of CD4 and CD8 expression among various lymphomas, which was independent of the level of CD3 expression. Considering TCR Vßgene family usage, 2 out of 14 lymphomas expressed Vß6. Normally, Vß6+thymocytes are deleted from the thymocyte pool at the immature DP stage of T-cell development in AKR mice. These data support the hypothesis that the lymphocytes in the immature DP stage of T-cell development are susceptible to the induction of AKR lymphomagenesis. The presence of Vß6+lymphoma cells indicates that the lymphomagenesis is accompanied by a defective clonal deletion of cells expressing a possible autoreactive TCR.


2015 ◽  
Vol 112 (25) ◽  
pp. 7773-7778 ◽  
Author(s):  
Hyung-Ok Lee ◽  
Xiao He ◽  
Jayati Mookerjee-Basu ◽  
Dai Zhongping ◽  
Xiang Hua ◽  
...  

The transcription factor T-helper-inducing POZ/Krueppel-like factor (ThPOK, encoded by the Zbtb7b gene) plays widespread and critical roles in T-cell development, particularly as the master regulator of CD4 commitment. Here we show that mice expressing a constitutive T-cell–specific ThPOK transgene (ThPOKconst mice) develop thymic lymphomas. These tumors resemble human T-cell acute lymphoblastic leukemia (T-ALL), in that they predominantly exhibit activating Notch1 mutations. Lymphomagenesis is prevented if thymocyte development is arrested at the DN3 stage by recombination-activating gene (RAG) deficiency, but restored by introduction of a T-cell receptor (TCR) transgene or by a single injection of anti-αβTCR antibody into ThPOKconst RAG-deficient mice, which promotes development to the CD4+8+ (DP) stage. Hence, TCR signals and/or traversal of the DN (double negative) > DP (double positive) checkpoint are required for ThPOK-mediated lymphomagenesis. These results demonstrate a novel link between ThPOK, TCR signaling, and lymphomagenesis. Finally, we present evidence that ectopic ThPOK expression gives rise to a preleukemic and self-perpetuating DN4 lymphoma precursor population. Our results collectively define a novel role for ThPOK as an oncogene and precisely map the stage in thymopoiesis susceptible to ThPOK-dependent tumor initiation.


1996 ◽  
Vol 184 (2) ◽  
pp. 519-530 ◽  
Author(s):  
A R Ramiro ◽  
C Trigueros ◽  
C Márquez ◽  
J L San Millán ◽  
M L Toribio

In murine T cell development, early thymocytes that productively rearrange the T cell receptor (TCR) beta locus are selected to continue maturation, before TCR alpha expression, by means of a pre-TCR alpha- (pT alpha-) TCR beta heterodimer (pre-TCR). The aim of this study was to identify equivalent stages in human thymocyte development. We show here that variable-diversity-joining region TCR beta rearrangement and the expression of full-length TCR beta transcripts have been initiated in some immature thymocytes at the TCR alpha/beta- CD4+CD8- stage, and become common in a downstream subset of TCR alpha/beta- CD4+CD8+ thymocytes that is highly enriched in large cycling cells. TCR beta chain expression was hardly detected in TCR alpha/beta- CD4+CD8- thymocytes, whereas cytoplasmic TCR beta chain was found in virtually all TCR alpha/beta- CD4+CD8+ blasts. In addition, a TCR beta complex distinct from the mature TCR alpha/beta heterodimer was immunoprecipitated only from the latter subset. cDNA derived from TCR alpha/beta- CD4+CD8+ blasts allowed us to identify and clone the gene encoding the human pT alpha chain, and to examine its expression at different stages of thymocyte development. Our results show that high pT alpha transcription occurs only in CD4+CD8- and CD4+CD8+ TCR alpha/beta- thymocytes, whereas it is weaker in earlier and later stages of development. Based on these results, we propose that the transition from TCR alpha/beta- CD4+CD8- to TCR alpha/beta- CD4+CD8+ thymocytes represents a critical developmental stage at which the successful expression of TCR beta promotes the clonal expansion and further maturation of human thymocytes, independent of TCR alpha.


2021 ◽  
Author(s):  
Delong Feng ◽  
Yanhong Chen ◽  
Ranran Dai ◽  
Shasha Bian ◽  
Wei Xue ◽  
...  

Abstract CD4+ and CD8+ double-positive (DP) thymocytes are at a crucial stage during the T cell development in the thymus. DP cells rearrange the T cell receptor gene Tcra to generate T cell receptors with TCRβ. Then DP cells differentiate into CD4 or CD8 single-positive (SP) thymocytes, Regulatory T cells, or invariant nature kill T cells (iNKT) according to the TCR signal. Chromatin organizer SATB1 is highly expressed in DP cells and plays an essential role in regulating Tcra rearrangement and differentiation of DP cells. Here we explored the mechanism of SATB1 orchestrating gene expression in DP cells. Single-cell RNA sequencing assay of SATB1-deficient thymocytes showed that the cell identity of DP thymocytes was changed, and the genes specifically highly expressed in DP cells were down-regulated. The super-enhancers regulate the expressions of the DP-specific genes, and the SATB1 deficiency reduced the super-enhancer activity. Hi-C data showed that interactions in super-enhancers and between super-enhancers and promoters decreased in SATB1 deficient thymocytes. We further explored the regulation mechanism of two SATB1-regulating genes, Ets2 and Bcl6, in DP cells and found that the knockout of the super-enhancers of these two genes impaired the development of DP cells. Our research reveals that SATB1 globally regulates super-enhancers of DP cells and promotes the establishment of DP cell identity, which helps understand the role of SATB1 in thymocyte development.


Blood ◽  
2003 ◽  
Vol 101 (7) ◽  
pp. 2693-2703 ◽  
Author(s):  
Vahid Asnafi ◽  
Kheira Beldjord ◽  
Emmanuelle Boulanger ◽  
Béatrice Comba ◽  
Patricia Le Tutour ◽  
...  

T-acute lymphoblastic leukemias (T-ALLs) derive from human T-lymphoid precursors arrested at various early stages of development. Correlation of phenotype and T-cell receptor (TCR) status with RAG-1 and pTα transcription in 114 T-ALLs demonstrated that they largely reflect physiologic T-lymphoid development. Half the TCRαβ lineage T-ALLs expressed a pre-TCR, as evidenced by RAG-1, pTα, and cTCRβ expression, absence of TCRδ deletion, and a sCD3−, CD1a+, CD4/8 double-positive (DP) phenotype, in keeping with a population undergoing β selection. Most TCRγδ T-ALLs were pTα, terminal deoxynucleotidyl transferase (TdT), and RAG-1lo/neg, double-negative/single-positive (DN/SP), and demonstrated only TCRβ DJ rearrangement, whereas 40% were pTα, TdT, and RAG-1 positive, DP, and demonstrated TCRβ V(D)J rearrangement, with cTCRβ expression in proportion. As such they may correspond to TCRαβ lineage precursors selected by TCRγδ expression, to early γδ cells recently derived from a pTα+ common αβ/γδ precursor, or to a lineage-deregulated αβ/γδ intermediate. Approximately 30% of T-ALLs were sCD3/cTCRβ− and corresponded to nonrestricted thymic precursors because they expressed non–T-restricted markers such as CD34, CD13, CD33, and CD56 and were predominantly DN, CD1a, pTα, and RAG-1 low/negative, despite immature TCRδ and TCRγ rearrangements. TCR gene configuration identified progressive T-lymphoid restriction. T-ALLs, therefore, provide homogeneous expansions of minor human lymphoid precursor populations that can aid in the understanding of healthy human T-cell development.


2004 ◽  
Vol 200 (6) ◽  
pp. 797-803 ◽  
Author(s):  
Qing Yu ◽  
Batu Erman ◽  
Jung-Hyun Park ◽  
Lionel Feigenbaum ◽  
Alfred Singer

Intrathymic T cell development depends on signals transduced by both T cell receptor and cytokine receptors. Early CD4−CD8− (double negative) thymocytes require interleukin (IL)-7 receptor (IL-7R) signals for survival and proliferation, but IL-7R signals are normally extinguished by the immature single positive (ISP) stage of thymocyte development. We now demonstrate that IL-7R signals inhibit expression of transcription factors TCF-1, LEF-1, and RORγt that are required for the ISP to double positive (DP) transition in the thymus. In addition, we demonstrate that IL-7R signals also inhibit TCF-1 and LEF-1 expression in mature peripheral T cells. Thus, the present work has identified several important downstream target genes of IL-7R signaling in T cells and thymocytes that provide a molecular mechanism for the inhibitory influence of IL-7R signaling on DP thymocyte development. We conclude that IL-7R signals down-regulate transcription factors required for the ISP to DP transition and so must be terminated by the ISP stage of thymocyte development.


2007 ◽  
Vol 204 (8) ◽  
pp. 1945-1957 ◽  
Author(s):  
Takeshi Egawa ◽  
Robert E. Tillman ◽  
Yoshinori Naoe ◽  
Ichiro Taniuchi ◽  
Dan R. Littman

Members of the Runx family of transcriptional regulators are required for the appropriate expression of CD4 and CD8 at discrete stages of T cell development. The roles of these factors in other aspects of T cell development are unknown. We used a strategy to conditionally inactivate the genes encoding Runx1 or Runx3 at different stages of thymocyte development, demonstrating that Runx1 regulates the transitions of developing thymocytes from the CD4−CD8− double-negative stage to the CD4+CD8+ double-positive (DP) stage and from the DP stage to the mature single-positive stage. Runx1 and Runx3 deficiencies caused marked reductions in mature thymocytes and T cells of the CD4+ helper and CD8+ cytotoxic T cell lineages, respectively. Runx1-deficient CD4+ T cells had markedly reduced expression of the interleukin 7 receptor and exhibited shorter survival. In addition, inactivation of both Runx1 and Runx3 at the DP stages resulted in a severe block in development of CD8+ mature thymocytes. These results indicate that Runx proteins have important roles at multiple stages of T cell development and in the homeostasis of mature T cells.


1998 ◽  
Vol 188 (9) ◽  
pp. 1669-1678 ◽  
Author(s):  
Andreas Würch ◽  
Judit Biro ◽  
Alexandre J. Potocnik ◽  
Ingrid Falk ◽  
Horst Mossmann ◽  
...  

During αβ thymocyte development, the clonotypic αβ–T cell receptor (TCR) is preceded by sequentially expressed immature versions of the TCR–CD3 complex: the pre-TCR, containing a clonotypic TCR-β chain and invariant pre-Tα, is expressed on pre-T cells before rearrangement of the TCR-α locus. Moreover, clonotype-independent CD3 complexes (CIC) appear on pro-T cells before VDJ rearrangements of TCR-β genes. The pre-TCR is known to mediate TCR-β selection, the prerequisite for maturation of CD4−8− double negative (DN) thymocytes to the CD4+8+ double positive stage. A developmental function of CIC has so far not been delineated. In mice single deficient and double deficient for CD3ζ/η and/or p56lck, we observe a pronounced reduction in the proportions of CD25+ DN thymocytes that express intracellular TCR-β chains. TCR-β transcripts are reduced in parallel with TCR-β polypeptide chains whereas no reduction in TCR-β locus rearrangements could be detected. Wild-type levels of TCR-β transcripts and of cells expressing TCR-β polypeptide chains are induced by treatment with anti-CD3ε mAb. The data suggest that the initial expression of rearranged TCR-β VDJ genes in pro-T cell to pre-T cell progression is dependent on CD3 complex signaling, and thus define a putative developmental function for CIC.


Sign in / Sign up

Export Citation Format

Share Document