scholarly journals CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor–β–dependent manner

2005 ◽  
Vol 202 (8) ◽  
pp. 1075-1085 ◽  
Author(s):  
François Ghiringhelli ◽  
Cédric Ménard ◽  
Magali Terme ◽  
Caroline Flament ◽  
Julien Taieb ◽  
...  

Tumor growth promotes the expansion of CD4+CD25+ regulatory T (T reg) cells that counteract T cell–mediated immune responses. An inverse correlation between natural killer (NK) cell activation and T reg cell expansion in tumor-bearing patients, shown here, prompted us to address the role of T reg cells in controlling innate antitumor immunity. Our experiments indicate that human T reg cells expressed membrane-bound transforming growth factor (TGF)–β, which directly inhibited NK cell effector functions and down-regulated NKG2D receptors on the NK cell surface. Adoptive transfer of wild-type T reg cells but not TGF-β−/− T reg cells into nude mice suppressed NK cell–mediated cytotoxicity, reduced NKG2D receptor expression, and accelerated the growth of tumors that are normally controlled by NK cells. Conversely, the depletion of mouse T reg cells exacerbated NK cell proliferation and cytotoxicity in vivo. Human NK cell–mediated tumor recognition could also be restored by depletion of T reg cells from tumor-infiltrating lymphocytes. These findings support a role for T reg cells in blunting the NK cell arm of the innate immune system.

2010 ◽  
Vol 207 (12) ◽  
pp. 2663-2673 ◽  
Author(s):  
Marina Babić ◽  
Michal Pyzik ◽  
Biljana Zafirova ◽  
Maja Mitrović ◽  
Višnja Butorac ◽  
...  

Cytomegaloviruses (CMVs) are renowned for interfering with the immune system of their hosts. To sidestep antigen presentation and destruction by CD8+ T cells, these viruses reduce expression of major histocompatibility complex class I (MHC I) molecules. However, this process sensitizes the virus-infected cells to natural killer (NK) cell–mediated killing via the “missing self” axis. Mouse cytomegalovirus (MCMV) uses m152 and m06 encoded proteins to inhibit surface expression of MHC I molecules. In addition, it encodes another protein, m04, which forms complexes with MHC I and escorts them to the cell surface. This mechanism is believed to prevent NK cell activation and killing by restoring the “self” signature and allowing the engagement of inhibitory Ly49 receptors on NK cells. Here we show that MCMV lacking m04 was attenuated in an NK cell– and MHC I–dependent manner. NK cell–mediated control of the infection was dependent on the presence of NK cell subsets expressing different inhibitory Ly49 receptors. In addition to providing evidence for immunoevasion strategies used by CMVs to avoid NK cell control via the missing-self pathway, our study is the first to demonstrate that missing self–dependent NK cell activation is biologically relevant in the protection against viral infection in vivo.


Blood ◽  
2011 ◽  
Vol 117 (17) ◽  
pp. 4511-4518 ◽  
Author(s):  
Katrina Soderquest ◽  
Nick Powell ◽  
Carmelo Luci ◽  
Nico van Rooijen ◽  
Andrés Hidalgo ◽  
...  

Abstract Natural killer (NK) cells play a major role in immunologic surveillance of cancer. Whether NK-cell subsets have specific roles during antitumor responses and what the signals are that drive their terminal maturation remain unclear. Using an in vivo model of tumor immunity, we show here that CD11bhiCD27low NK cells migrate to the tumor site to reject major histocompatibility complex class I negative tumors, a response that is severely impaired in Txb21−/− mice. The phenotypical analysis of Txb21-deficient mice shows that, in the absence of Txb21, NK-cell differentiation is arrested specifically at the CD11bhiCD27hi stage, resulting in the complete absence of terminally differentiated CD11bhiCD27low NK cells. Adoptive transfer experiments and radiation bone marrow chimera reveal that a Txb21+/+ environment rescues the CD11bhiCD27hi to CD11bhiCD27low transition of Txb21−/− NK cells. Furthermore, in vivo depletion of myeloid cells and in vitro coculture experiments demonstrate that spleen monocytes mediate the terminal differentiation of peripheral NK cells in a Txb21- and IL-15Rα–dependent manner. Together, these data reveal a novel, unrecognized role for Txb21 expression in monocytes in promoting NK-cell development and help appreciate how various NK-cell subsets are generated and participate in antitumor immunity.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Kazuyoshi Takeda ◽  
Ko Okumura

Panax ginsengextracts are used in traditional herbal medicines, particularly in eastern Asia, but their effect on natural killer (NK) cell activity is not completely understood. This study aimed to examine the effects ofP. ginsengextracts on the cytotoxic activity of NK cells. We orally administeredP. ginsengextracts or ginsenosides to wild-type (WT) C57BL/6 (B6) and BALB/c mice and to B6 mice deficient in either recombination activating gene 2 (RAG-2) or interferon-γ(IFN-γ). We then tested the cytotoxic activity of NK cells (of spleen and liver mononuclear cells) against NK-sensitive YAC-1 cells. Oral administration ofP. ginsengaqueous extract augmented the cytotoxicity of NK cells in WT B6 and BALB/c mice and in RAG-2-deficient B6 mice, but not in IFN-γ-deficient B6 mice. This effect was only observed with the aqueous extract ofP. ginseng. Interestingly, the ginsenosides Rb1 and Rg1 did not augment NK cell cytotoxicity. These results demonstrated that the aqueousP. ginsengextract augmented NK cell activationin vivovia an IFN-γ-dependent pathway.


2012 ◽  
Vol 209 (3) ◽  
pp. 565-580 ◽  
Author(s):  
Baptiste N. Jaeger ◽  
Jean Donadieu ◽  
Céline Cognet ◽  
Claire Bernat ◽  
Diana Ordoñez-Rueda ◽  
...  

Natural killer (NK) cells are bone marrow (BM)–derived granular lymphocytes involved in immune defense against microbial infections and tumors. In an N-ethyl N-nitrosourea (ENU) mutagenesis strategy, we identified a mouse mutant with impaired NK cell reactivity both in vitro and in vivo. Dissection of this phenotype showed that mature neutrophils were required both in the BM and in the periphery for proper NK cell development. In mice lacking neutrophils, NK cells displayed hyperproliferation and poor survival and were blocked at an immature stage associated with hyporesponsiveness. The role of neutrophils as key regulators of NK cell functions was confirmed in patients with severe congenital neutropenia and autoimmune neutropenia. In addition to their direct antimicrobial activity, mature neutrophils are thus endowed with immunoregulatory functions that are conserved across species. These findings reveal novel types of cooperation between cells of the innate immune system and prompt examination of NK cell functional deficiency in patients suffering from neutropenia-associated diseases.


Blood ◽  
2005 ◽  
Vol 105 (12) ◽  
pp. 4722-4729 ◽  
Author(s):  
Philipp Eissmann ◽  
Lisa Beauchamp ◽  
Joe Wooters ◽  
John C. Tilton ◽  
Eric O. Long ◽  
...  

Abstract Triggering of 2B4 (CD244) can induce natural killer (NK)-cell activation, costimulation, or even inhibition of NK-cell activity. Here, we investigate the molecular basis for the different signals generated by 2B4. We show that the first immunoreceptor tyrosine-based switch motif (ITSM) within the cytoplasmic tail of 2B4 is sufficient for 2B4-mediated NK-cell activation, whereas the third ITSM can negatively influence 2B4 signaling. We further identify signaling molecules that associate with 2B4. Signaling lymphocyte activation molecule-associated protein (SAP) can bind to all 4 ITSMs of 2B4 in a phosphorylation-dependent manner. The phosphorylated third ITSM can additionally recruit the phosphatases SHP-1, SHP-2, SHIP, and the inhibitory kinase Csk. SAP acts as an inhibitor of interactions between 2B4 and these negative regulatory molecules, explaining how 2B4 inhibits NK-cell activation in the absence of functional SAP, as occurs in cells from patients with X-linked lymphoproliferative syndrome (XLP). Recently, another function for SAP was proposed: SAP can recruit the kinase Fyn to the SLAM (CD150) immune receptor. We now show that Fyn can also associate with phosphorylated 2B4. Finally, we demonstrate that Fyn and Csk can both phosphorylate 2B4, suggesting a possible mechanism of 2B4 phosphorylation. (Blood. 2005;105:4722-4729)


2021 ◽  
Vol 218 (6) ◽  
Author(s):  
Zhong-Yin Li ◽  
Rosemary E. Morman ◽  
Emma Hegermiller ◽  
Mengxi Sun ◽  
Elizabeth T. Bartom ◽  
...  

Gaining a mechanistic understanding of the expansion and maturation program of natural killer (NK) cells will provide opportunities for harnessing their inflammation-inducing and oncolytic capacity for therapeutic purposes. Here, we demonstrated that ID2, a transcriptional regulatory protein constitutively expressed in NK cells, supports NK cell effector maturation by controlling the amplitude and temporal dynamics of the transcription factor TCF1. TCF1 promotes immature NK cell expansion and restrains differentiation. The increased TCF1 expression in ID2-deficient NK cells arrests their maturation and alters cell surface receptor expression. Moreover, TCF1 limits NK cell functions, such as cytokine-induced IFN-γ production and the ability to clear metastatic melanoma in ID2-deficient NK cells. Our data demonstrate that ID2 sets a threshold for TCF1 during NK cell development, thus controlling the balance of immature and terminally differentiated cells that support future NK cell responses.


Blood ◽  
2009 ◽  
Vol 113 (14) ◽  
pp. 3218-3225 ◽  
Author(s):  
Neil C. Robson ◽  
Heng Wei ◽  
Tristan McAlpine ◽  
Naomi Kirkpatrick ◽  
Jonathan Cebon ◽  
...  

Abstract Dendritic-cell (DC) and natural killer (NK)–cell interactions are critical in sculpting the adaptive immune response. However, the mechanisms by which DCs down-regulate NK-cell functions are not well understood. NK-cell function is inhibited by transforming growth factor beta (TGF-β), but DCs do not appear to produce TGF-β. We have previously shown that activated human DCs produce large amounts of activin-A, a TGF-β superfamily member, which autoregulates DC function. The present report shows that NKcells express type I and II activin receptors and that activin-A triggers NK-cell Smad 2/3 signaling. Furthermore, activin-A directly regulates NK cell functions by (1) down-regulating the T-box transcription factor T-bet and interferon gamma (IFN-γ) but not perforin or granzyme mRNA; (2) suppressing NK-cell IFN-γ production as potently as TGF-β; and (3) suppressing NK-cell CD25 expression and proliferation and sculpting NK-cell cytokine and chemokine profiles. Interestingly, unlike TGF-β, activin-A weakly down-regulates the NK-cell natural cytotoxicity receptors (NCRs) NKp30 and NKG2D but does not attenuate their cytotoxic function. These findings provide the first evidence for a novel immune regulatory role of activin-A during DC-mediated NK-cell regulation, highlighting the potential of antagonizing activin-A signaling in vivo to enhance NK cell–mediated immune functions and adaptive immunity.


Cancers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 423 ◽  
Author(s):  
Jennifer Foltz ◽  
Jena Moseman ◽  
Aarohi Thakkar ◽  
Nitin Chakravarti ◽  
Dean Lee

Transforming growth factor-beta (TGFβ) is a potent immunosuppressive cytokine that inhibits the anti-tumor responses of NK cells and T cells. However, the stimulation of natural killer (NK) cells with pro-inflammatory cytokines decreases NK cell sensitivity to TGFβ. Herein, we sought to determine if TGFβ imprinting (TGFβi) during NK cell activation and expansion would decrease NK cell sensitivity to TGFβ suppression. To this end, we demonstrate that the activation of NK cells during chronic IL-2 stimulation and TGFβi potently induces NK cell hypersecretion of interferon-gamma (IFNγ) and tumor necrosis factor-alpha (TNFα) in response to tumor targets which persists for at least one month in vitro after the removal of TGFβ. TGFβi NK cell cytokine hypersecretion is induced following both cytokine and tumor activation. Further, TGFβi NK cells have a marked suppression of SMAD3 and T-bet which is associated with altered chromatin accessibility. In contrast to their heightened cytokine secretion, TGFβi NK cells downregulate several activating receptors, granzyme and perforin, and upregulate TRAIL, leading to cell-line-specific alterations in cytotoxicity. These findings may impact our understanding of how TGFβ affects NK cell development and anti-tumor function.


Author(s):  
Zhihui Deng ◽  
Jianxin Zhen ◽  
Genelle F Harrison ◽  
Guobin Zhang ◽  
Rui Chen ◽  
...  

Abstract Human natural killer (NK) cells are essential for controlling infection, cancer and fetal development. NK cell functions are modulated by interactions between polymorphic inhibitory killer cell immunoglobulin-like receptors (KIR) and polymorphic HLA-A, -B and -C ligands expressed on tissue cells. All HLA-C alleles encode a KIR ligand and contribute to reproduction and immunity. In contrast, only some HLA-A and -B alleles encode KIR ligands and they focus on immunity. By high-resolution analysis of KIR and HLA-A, -B and -C genes, we show that the Chinese Southern Han are significantly enriched for interactions between inhibitory KIR and HLA-A and -B. This enrichment has had substantial input through population admixture with neighboring populations, who contributed HLA class I haplotypes expressing the KIR ligands B*46:01 and B*58:01, which subsequently rose to high frequency by natural selection. Consequently, over 80% of Southern Han HLA haplotypes encode more than one KIR ligand. Complementing the high number of KIR ligands, the Chinese Southern Han KIR locus combines a high frequency of genes expressing potent inhibitory KIR, with a low frequency of those expressing activating KIR. The Southern Han centromeric KIR region encodes strong, conserved, inhibitory HLA-C specific receptors, and the telomeric region provides a high number and diversity of inhibitory HLA-A and -B specific receptors. In all these characteristics, the Chinese Southern Han represent other East Asians, whose NK cell repertoires are thus enhanced in quantity, diversity and effector strength, likely augmenting resistance to endemic viral infections.


Sign in / Sign up

Export Citation Format

Share Document