scholarly journals E4F1 deficiency results in oxidative stress–mediated cell death of leukemic cells

2011 ◽  
Vol 208 (7) ◽  
pp. 1403-1417 ◽  
Author(s):  
Elodie Hatchi ◽  
Genevieve Rodier ◽  
Matthieu Lacroix ◽  
Julie Caramel ◽  
Olivier Kirsh ◽  
...  

The multifunctional E4F1 protein was originally discovered as a target of the E1A viral oncoprotein. Growing evidence indicates that E4F1 is involved in key signaling pathways commonly deregulated during cell transformation. In this study, we investigate the influence of E4F1 on tumorigenesis. Wild-type mice injected with fetal liver cells from mice lacking CDKN2A, the gene encoding Ink4a/Arf, developed histiocytic sarcomas (HSs), a tumor originating from the monocytic/macrophagic lineage. Cre-mediated deletion of E4F1 resulted in the death of HS cells and tumor regression in vivo and extended the lifespan of recipient animals. In murine and human HS cell lines, E4F1 inactivation resulted in mitochondrial defects and increased production of reactive oxygen species (ROS) that triggered massive cell death. Notably, these defects of E4F1 depletion were observed in HS cells but not healthy primary macrophages. Short hairpin RNA–mediated depletion of E4F1 induced mitochondrial defects and ROS-mediated death in several human myeloid leukemia cell lines. E4F1 protein is overexpressed in a large subset of human acute myeloid leukemia samples. Together, these data reveal a role for E4F1 in the survival of myeloid leukemic cells and support the notion that targeting E4F1 activities might have therapeutic interest.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4650-4650
Author(s):  
Fernanda Marconi Roversi ◽  
Maura Lima Pereira Bueno ◽  
Cristiane Okuda Torello ◽  
Fernanda I Della Via ◽  
Renata Giardini Rosa ◽  
...  

Introduction. Hematopoietic cell kinase (HCK) belongs to the Src kinase family (SFK) involved in the oncogenic process and hematological malignancy. Some SFK inhibitors are currently under investigation in clinical trials for leukemia after demonstrating efficacy in patients with solid tumors. We have previously reported that HCK is overexpressed in leukemic cells and its inhibition by lentivirus resulted in reduction of cell growth and increased cell death (Roversi et al. BBA Mol Basis Dis. 2017, 1863(2):450-61). In light of the genomic and molecular diversity of myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), the development of chemical compounds specific for new molecular targets is currently an important subject. Aims. To investigate the in vitro and in vivo effects of a new chemical compound targeting HCK inhibition (iHCK), alone or in combination with the most used drugs for treatment of MDS and AML (Azacytidine - Aza - or Cytarabine - Ara-C). Methods. After iHCK development, we tested its activity alone or in combination with Aza or Ara-C in CD34+ cells isolated from AML patients (n=5) as well as in a panel of myeloid leukemia cell lines (KG1, HL-60, HEL and K562). Additionally, we tested the iHCK in normal and malignant cells cultured in a 3D bioscaffold obtained by decellularization of bovine bone marrow (Bianco et al. Biomat Sci 2019, 7(4):1516-28), in order to mimic the bone marrow niche. After informed written consent and approval of the Ethical Committee of University of Campinas (CAAE 1000.0.146.00-11), in accordance to the Helsinki Declaration, CD34+ cells were isolated from bone marrows of healthy donors (HD), MDS and AML patients and were treated with iHCK or vehicle (DMSO) in liquid culture, for three days. Meanwhile, HS-5 mesenchymal cells were cultured into the 3D bioscaffold. iHCK or vehicle treated CD34+ cells were introduced into the 3D bioscaffold containing HS-5 and evaluated after 7 and 14 days, by light microscopy (hematoxilin and eosin regular staining) and immunohistochemistry (expression of CD34 and CD90 antigens). NOD.CB17-Prkdcscid/J mice received 2 Gy irradiation followed by transplantation with caudal intravenous injection of leukemia cells obtained from hCG-PML-RARα transgenic mice. After acute promyelocytic leukemia (APL) establishment, animals were treated or not with intraperitoneally iHCK and peripheral blood was collected for hematological analysis and protein was extracted from spleen and bone marrows for Western Blot analysis. ANOVA and Student's T-Test were used. Results.In leukemia cell lines and primary cells, the combinatory treatment of iHCK and Cytarabine (1μM) or 5-Azacitidine (1μM) demonstrated synergistic effects, compared to either drug alone, on the reduction of growth and induction of cell death (P<0.001; Figure 1). Further, Western blot revealed increased BAX expression and decreased BCL-XL expression. Moreover, iHCK treatment was able to reduce the activation of oncogenic pathways, MAPK/ERK and PI3K/AKT, leading to severe reduction of ERK, AKT and p70S6 phosphorylation. Treatment with iHCK reduced CD34+ MDS and AML cells proliferation cultured into the 3D bioscaffold but had no effect upon normal CD34+cells. In vivo analysis showed that APL mice treated with iHCK (5μM) for 48h had reduced leukocyte number compared to APL mice treated with vehicle (13.2±1.1 vs 49.4±18.8; P<0.001). No alterations in hemoglobin levels and platelet were found. Likewise, the in vivo iHCK (2.5μM, 5.0μM or 10.0μM) treatment decreased the phosphorylation of ERK, AKT and P70S6K proteins of leukemic cells (Figure 2). Conclusion.The iHCK pharmacological inhibitor has an antiproliferative activity in leukemic cells without altering cell death and survival rate of normal cells, demonstrating on-target malignant cell killing activity as a single agent or in combination with Azacytidine (Aza) or Cytarabine (Ara-C). Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 538-538
Author(s):  
Elena Manara ◽  
Emma Baron ◽  
Alessandra Beghin ◽  
Claudia Tregnago ◽  
Emanuela Giarin ◽  
...  

Abstract Abstract 538 The cAMP response element binding protein (CREB) is a nuclear transcription factor downstream of various stimuli and is critical for the pathogenesis of leukemia. CREB overexpression promotes abnormal proliferation, cell cycle progression, and clonogenic potential in vitro and in vivo. We found that CREB deregulation in Acute Myeloid Leukemia (AML) is due to both genomic amplification and aberrant miRNA expression. CREB has been shown to be a direct target of the microRNA, miR-34b. The inverse correlation between CREB and miR-34b expression has been described in myeloid leukemic cell lines. Mir-34b restoration reduced CREB levels and leukemia proliferation in vitro. One reason for the lower expression of miR-34b in myeloid leukemia cell lines is the hypermethylation of its promoter. Our goal was to characterize the role of miR-34b in AML progression using primary cells and mouse models. We also studied the regulation of miR-34b expression in cells from patients with AML and myelodysplastic syndromes (MDS). Primary AML cells transiently overexpressing miR-34b had decreased clonogenicity, as well as increase in apoptosis (9.9 vs. 25.5%, p<0.001). Primary leukemia cells from AML patients (n=3) treated with the demethylating agent 5-aza-2′-deoxycytidine showed a rise in miR-34b expression after 16 hours (RQ=7±2.6). We also observed a concomitant decrease in CREB protein expression and its target genes. In vivo, miR-34b overexpression resulted in decreased CREB expression and suppression of leukemia growth in flank tumor models with HL-60 and K562 cells injected into NOD-SCID IL-2receptor gamma null (NSG) mice, measured by bioluminescence and tumor volume (n=10 per group). These results demonstrated that miR-34b is an important tumor-suppressor through downregulation of CREB. We next investigated miR-34b expression in a large series of AML patients (n=118), a group of MDS patients (n= 49), and healthy bone marrows (HL-BM) (n=17) by quantitative PCR. Our results demonstrated lower miR-34b expression in blast cells from AML patients at diagnosis compared to HL-BM. The lower miR-34b expression in AML patients correlated with elevated CREB levels, similar to myeloid leukemia cell lines. The expression levels of miR-34b in bone marrow from MDS patients were intermediate between AML patients and HL-BM. These results suggest that miR-34b regulates CREB and is involved in the evolution of MDS to AML. In an effort to understand the mechanism of miR-34b downregulation in primary AML and MDS BM cells, miR-34b promoter methylation was determined using MS-PCR in both patient cohorts. The miR-34b promoter was found to be methylated in 65% (78/118) of AML patients at diagnosis, while it was unmethylated in all MDS samples (49/49). In particular, 3 MDS patients that evolved to AML had miR-34b promoter hypermethylation exclusively at the onset of AML. We further tested this hypothesis by downregulating miR-34b in primary HL-BM and fetal liver cells by using both oligonucleotides and a lentiviral transduction. An increase in CREB mRNA and several CREB target genes (for example cyclin B1, cyclin E2, p21) was observed. Moreover, the cell cycle profile demonstrated increased numbers of cells in S phase compared to negative controls. Methylcellulose colony formation was also increased in HL-BM and fetal liver cells transduced with a miR-34b inhibitor compared to controls (197 vs. 101, p<0.001). Therefore, we conclude that miR-34b promoter methylation is critical for the pathogenesis of AML through regulation of CREB-dependent pathways. Disclosures: Sakamoto: Abbott Laboratories, Inc.: Research Funding; Genentech, Inc.: Research Funding.


Author(s):  
Yudi Miao ◽  
Behnam Mahdavi ◽  
Mohammad Zangeneh

IntroductionThe present study investigated the anti-acute myeloid leukemia effects of Ziziphora clinopodides Lam leaf aqueous extract conjugated cadmium nanoparticles.Material and methodsTo synthesize CdNPs, Z. clinopodides aqueous extract was mixed with Cd(NO3)2 .4H2O. The characterization of the biosynthesized cadmium nanoparticles was carried out using many various techniques such as UV-Vis. and FT-IR spectroscopy, XRD, FE-SEM, and EDS.ResultsThe uniform spherical morphology of NPs was proved by FE-SEM images with NPs the average size of 26.78cnm. For investigating the antioxidant properties of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, the DPPH test was used. The cadmium nanoparticles inhibited half of the DPPH molecules in a concentration of 196 µg/mL. To survey the cytotoxicity and anti-acute myeloid leukemia effects of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, MTT assay was used on the human acute myeloid leukemia cell lines i.e., Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr. The IC50 of the cadmium nanoparticles was 168, 205, and 210 µg/mL against Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr cell lines, respectively. In the part of in vivo study, DMBA was used for inducing acute myeloid leukemia in mice. CdNPs similar to daunorubicin ameliorated significantly (p≤0.01) the biochemical, inflammatory, RBC, WBC, platelet, stereological, histopathological, and cellular-molecular parameters compared to the other groups.ConclusionsAs mentioned, the cadmium nanoparticles had significant anti-acute myeloid leukemia effects. After approving the above results in the clinical trial studies, these cadmium nanoparticles can be used as a chemotherapeutic drug to treat acute myeloid leukemia in humans.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2605-2605
Author(s):  
Lars Bullinger ◽  
Konstanze Dohner ◽  
Richard F. Schlenk ◽  
Frank G. Rucker ◽  
Jonathan R. Pollack ◽  
...  

Abstract Inhibitors of histone deacetylases (HDACIs) like valproic acid (VPA) display activity in murine leukemia models, and induce tumor-selective cytoxicity against blasts from patients with acute myeloid leukemia (AML). However, despite of the existing knowledge of the potential function of HDACIs, there remain many unsolved questions especially regarding the factors that determine whether a cancer cell undergoes cell cycle arrest, differentiation, or death in response to HDACIs. Furthermore, there is still limited data on HDACIs effects in vivo, as well as HDACIs function in combination with standard induction chemotherapy, as most studies evaluated HDACIs as single agent in vitro. Thus, our first goal was to determine a VPA response signature in different myeloid leukemia cell lines in vitro, followed by an in vivo analysis of VPA effects in blasts from adult de novo AML patients entered within two randomized multicenter treatment trials of the German-Austrian AML Study Group. To define an VPA in vitro “response signature” we profiled gene expression in myeloid leukemia cell lines (HL-60, NB-4, HEL-1, CMK and K-562) following 48 hours of VPA treatment by using DNA Microarray technology. In accordance with previous studies in vitro VPA treatment of myeloid cell lines induced the expression of the cyclin-dependent kinase inhibitors CDKN1A and CDKN2D coding for p21 and p19, respectively. Supervised analyses revealed many genes known to be associated with a G1 arrest. In all cell lines except for CMK we examined an up-regulation of TNFSF10 coding for TRAIL, as well as differential regulation of other genes involved in apoptosis. Furthermore, gene set enrichment analyses showed a significant down-regulation of genes involved in DNA metabolism and DNA repair. Next, we evaluated the VPA effects on gene expression in AML samples collected within the AMLSG 07-04 trial for younger (age<60yrs) and within the AMLSG 06-04 trial for older adults (age>60yrs), in which patients are randomized to receive standard induction chemotherapy (idarubicine, cytarabine, and etoposide = ICE) with or without concomitant VPA. We profiled gene expression in diagnostic AML blasts and following 48 hours of treatment with ICE or ICE/VPA. First results from our ongoing analysis of in vivo VPA treated samples are in accordance with our cell line experiments as e.g. we also see an induction of CDKN1A expression. However, the picture observed is less homogenous as concomitant administration of ICE, as well as other factors, like e.g. VPA serum levels, might substantially influence the in vivo VPA response. Nevertheless, our data are likely to provide new insights into the VPA effect in vivo, and this study may proof to be useful to predict AML patients likely to benefit from VPA treatment. To achieve this goal, we are currently analyzing additional samples, and we are planning to correlate gene expression findings with histone acetylation status, VPA serum levels, cytogenetic, and molecular genetic data.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4375-4375
Author(s):  
Mayuko Goto ◽  
Ichiro Hanamura ◽  
Motohiro Wakabayashi ◽  
Hisao Nagoshi ◽  
Tomohiko Taki ◽  
...  

Abstract Abstract 4375 Leukemia cell lines are ubiquitous powerful research tools that are available to many investigators. In balanced chromosomal aberration in leukemia, a chimeric fusion gene formed by genes existing on breakpoints is frequently related to leukemogenesis. Cytogenetic abnormalities of chromosome band 12p13 are detected non-randomly in various hematological malignancies and usually involved TEL, which encodes a protein of the ETS transcription factor family. Chromosome band 22q11-12 is one of partners of translocation 12p13 and t(12;22)(p13;q11-12) results in fusion of TEL and MN1 or in just the partial inactivation of TEL. It is important to analyze precisely the breakpoint in a non-random translocation such as t(12;22)(p13;q11-12) and in addition it contributes to the better understanding of the molecular pathogenesis of leukemogenesis. In this study, we established a novel human myeloid leukemia cell line, AMU-AML1, having t(12;22) from a patient with acute myeloid leukemia with multilineage dysplasia and analyzed its characters. Mononuclear cells were isolated by Ficoll-Hypaque sedimentation from patient's bone marrow before initiation of chemotherapy and cultured in RPMI 1640 supplemented with 10% heat-inactivated fetal bovine serum (FBS). After 3 months, cell proliferation became continuous. The cell line, named AMU-AML1, was established. In AMU-AML1, the following pathogens were negative for EBV, CMV, HBV, HCV, HIV-1, HTLV-1 and mycoplasma. A doubling time of AMU-AML1 cells was about 96 hours. Proliferation of the cells was stimulated by rhG-CSF (10 ng/ml), rhGM-CSF (10 ng/ml), M-CSF (50 ng/ml), rhIL-3 (10 ng/ml) and rhSCF (100 ng/ml) but not by IL-5 (10 ng/ml), rhIL-6 (10 ng/ml), and rhEPO (5 U/ml). AMU-AML1 was positive for CD13, CD33, CD117 and HLA-DR, negative for CD3, CD4, CD8 and CD56 by flow cytometry analysis. G-banding combined with SKY analysis of AMU-AML1 cells showed single structural abnormality; 46, XY, t(12;22)(p13;q11.2). Double-color FISH using PAC/BAC clones listed in NCBI website and array CGH analyses indicated that the breakpoint in 12p13 was within TEL or telomeric to TEL and it of 22q11 was centromeric to MN1. A chimeric MN1-TEL transcript and fusion protein of MN1-TEL could not be detected by RT-PCR and western blot analysis. The wild type of MN1 protein was strongly expressed in AMU-AML1 compared with other leukemic cell lines with t(12;22), MUTZ-3 and UCSD/AML1. Our data suggest that AMU-AML1 had a t(12;22)(p13;q11.2) without fusion of MN1-TEL and the expression level of MN1 protein was relatively high, which might have some effects on leukemogenesis. In conclusion, AMU-AML1 is a useful cell line to analyze the biological consequences of the leukemic cells with t(12;22)(p13;q11.2) but no fusion of MN1-TEL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1300-1300
Author(s):  
Alessia Roma ◽  
Matthew Tcheng ◽  
Nawaz Ahmed ◽  
Sarah Walker ◽  
Preethi Jayanth ◽  
...  

Abstract Acute myeloid leukemia (AML) is a hematological malignancy, characterized by an increased reliance on mitochondria-related energetic pathways including oxidative phosphorylation (OXPHOS). Consistent with this, the electron transport chain (ETC), a component of OXPHOS has been demonstrated to be a suitable anti-leukemia target, with ETC complex I inhibitors currently in clinical development. Relative to its counterparts, complex II (CII) is unique in that it directly links the ETC to the tricarboxylic acid (TCA) cycle through succinate dehydrogenase (SDH) activity. Moreover, it is the only ETC complex with elevated activity in AML, relative to normal hematopoietic samples, with indirect inhibition selectively targeting AML cells. However, direct CII inhibition in AML has not been previously investigated, nor have the mechanisms underlying the divergent fates of AML and normal cells upon CII inhibition. A genetic approach was first used to assess the effects of CII impairment on AML growth in vitro and in vivo. Using lentiviral mediated shRNA we generated AML cell lines lacking succinate dehydrogenase assembly factor 1 (Sdhaf1). Sdhaf1 knockdown suppressed CII activity, cell proliferation and clonogenic growth across all three cell lines and delayed leukemia growth in vivo. To recapitulate these effects through a pharmacological approach, we aimed to identify a novel CII inhibitor, since currently available inhibitors are only effective at high doses and are neurotoxic. Through an in silico structural screen and molecular docking study, shikonin was identified as a small molecule that selectively binds to CII. Shikonin inhibited CII activity in the AML cells lines and patient-derived samples, and selectively killed AML cells (EC 50: 1.0μM ± 0.04) while sparing normal progenitors. In murine engraftment models, shikonin (2.0-3.0 mg/kg, 3x/week for 5 weeks) significantly reduced engraftment of patient-derived AML cells but had no effect on normal hematopoiesis. To further characterize the mechanisms governing the divergent cell fates of CII inhibition, we performed stable isotope metabolic tracing using 13C 6- glucose and 13C 5, 15N 2-glutamine in patient-derived AML cells and normal mobilized peripheral blood mononuclear cells (MNCs). Both pharmacological and genetic loss of CII resulted in TCA cycle truncation by impairing oxidative metabolism of both glucose and glutamine. In Sdhaf1 knockdown and primary AML cells, this led to a depletion in steady state levels of TCA metabolites proceeding SDH. Inhibition of CII most notably suppressed levels of aspartate, a nucleotide precursor whose levels dictate the proliferative capacity of a cell under ETC dysfunction. Remarkably, MNCs maintained aspartate levels despite inhibition of CII, which was attributed to reductive carboxylation of glutamine, an alternate metabolic pathway that can regenerate TCA intermediates when OXPHOS is impaired. In contrast, while reductive carboxylation was also active in AML cells after CII inhibition, this activity was insufficient to maintain aspartate levels and resulted in metabolite depletion and cell death. Thus, loss of CII activity results in diverse cell fates whereby normal haematopoietic, but not AML cells sufficiently use reductive carboxylation of glutamine to overcome TCA cycle truncation, sustain aspartate levels and avert cell death. This is further evident through modulation of glutamine entry into the TCA cycle, where supplementation of cell-permeable α-ketoglutarate abrogated shikonin-mediated cell death while concomitant treatment with the glutaminase inhibitor CB-839, sensitized cells. Together, these results expose reductive carboxylation to support aspartate biosynthesis, as a novel metabolic vulnerability in AML that can be pharmacologically targeted through CII inhibition for clinical benefit. Disclosures Minden: Astellas: Consultancy. D'Alessandro: Omix Thecnologies: Other: Co-founder; Rubius Therapeutics: Consultancy; Forma Therapeutics: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
1993 ◽  
Vol 82 (4) ◽  
pp. 1151-1158 ◽  
Author(s):  
PS Crosier ◽  
ST Ricciardi ◽  
LR Hall ◽  
MR Vitas ◽  
SC Clark ◽  
...  

Abstract Because mutations in receptor tyrosine kinases may contribute to cellular transformation, studies were undertaken to examine c-kit in human leukemia. Isoforms of c-kit have been characterized in the human megakaryoblastic leukemia cell line M-07. Deletion of the four amino acids Gly-Asn-Asn-Lys in the extracellular domain represents an alternatively spliced isoform that has been shown by others, in mice, to be associated with constitutive receptor autophosphorylation (Reith et al, EMBO J 10:2451, 1991). Additional isoforms differ in the inclusion or exclusion of a serine residue in the interkinase domain, a region that contains the binding site for phosphatidylinositol 3- kinase. By RNase protection analysis, we have shown coexpression of the Gly-Asn-Asn-Lys+ and Gly-Asn-Asn-Lys- isoforms, with dominance of the Gly-Asn-Asn-Lys- transcript, in normal human bone marrow, normal melanocytes, a range of tumor cell lines, and the blasts of 23 patients with acute myeloid leukemia. Analysis of transcripts for the Ser+ and Ser- isoforms also showed coexpression in all normal and leukemic cells examined. The ratios of isoform expression for both the Gly-Asn-Asn-Lys and Ser variants were relatively constant, providing no evidence in the tumors examined that upregulation of one isoform contributes to the neoplastic process.


Blood ◽  
1999 ◽  
Vol 93 (7) ◽  
pp. 2386-2394 ◽  
Author(s):  
Lidija Klampfer ◽  
Jörg Cammenga ◽  
Hans-Georg Wisniewski ◽  
Stephen D. Nimer

Abstract Nonsteroidal antiinflammatory agents (NSAIA) have been shown to exert potent chemopreventive activity against colon, lung, and breast cancers. In this study, we show that at pharmacological concentrations (1 to 3 mmol/L) sodium salicylate (Na-Sal) can potently induce programmed cell death in several human myeloid leukemia cell lines, including TF-1, U937, CMK-1, HL-60, and Mo7e. TF-1 cells undergo rapid apoptosis on treatment with Na-Sal, as indicated by increased annexin V binding capacity, cpp-32 (caspase-3) activation, and cleavage of poly (ADP-ribose) polymerase (PARP) and gelsolin. In addition, the expression of MCL-1, an antiapoptotic member of the BCL-2 family, is downregulated during Na-Sal–induced cell death, whereas the expression of BCL-2, BAX, and BCL-XL is unchanged. Z-VAD, a potent caspase inhibitor, prevents the cleavage of PARP and gelsolin and rescues cells from Na-Sal–induced apoptosis. In addition, we show that Na-Sal accelerates growth factor withdrawal-induced apoptosis and synergizes with daunorubicin to induce apoptosis in TF-1 cells. Thus, our data provide a potential mechanism for the chemopreventive activity of NSAIA and suggest that salicylates may have therapeutic potential for the treatment of human leukemia.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4244-4244
Author(s):  
Tsuyoshi Nakamaki ◽  
Norimichi Hattori ◽  
Hidetoshi Nakashima ◽  
Takashi Maeda ◽  
Hirotsugu Ariizumi ◽  
...  

Abstract Pervious in vitro studies have shown that molecular alterations of BCR-ABL-positive leukemia cells such as amplification of BCR-ABL gene and/or mutation(s) of abl kinase domain cause resistant to imatinib. However recent study showed that alterations of imatinib bioavailability might be a important factor to cause clinical resistant in BCR-ABL-positive leukemia patients, showing a differences between in vivo and in vitro sensitivity to imatinib of BCR-ABL-positive cells. To analyze mechanism(s) of clinical resistance to imatinib and to overcome the resistance, we have sequentially established and characterized two leukemia cell lines from a patient with myeloid blastic crisis of chronic myeloid leukemia (CML) who showed progressively resistant to imatinib. Case report and establishment of cell lines: a 59-years-old women developed blastic crisis preceded by four years of chronic phase of CML. Increased blasts in crisis was positive for CD13, 33 and showed double Ph-chromosome in addition to complexed chromosomal alterations such as, add(3)(p13), add(3)(q11), add(5)(q11), der(19)(3;19) (p21;q13). After repeated courses of combination chemotherapy including, 600mg of imatinib was administered orally in combination with chemotherapeutic drugs. For a brief period Imatinib showed clinical effects and slowed the increase of BCR-ABL-positive cells, however myeloblast progressively increased in peripheral blood in spite of daily administration of imatinib and she died four months treatment with imatinib. Two myeloid leukemia cell lines, NS-1 and NS-2 were established, after obtaining informed consent, from peripheral blood at day 65 and day 95 after initiation of imatinib administration, respectively. Cell surface phenotype and karyotype of these cell lines were identical to original blasts. NS-1 and NS-2 cell lines were characterized compared with BCR/ABL-positive K562 erythroleukemia cell line as a control Quantitative analysis by real-time polymerase chain reaction showed that copy number of BCR-ABL transcript were 2.2 × 105 and 1.6 × 10 5/μg RNA in NS-1 and NS-2 respectively, showing slightly lower than those (5.8 × 105) in K562 cell line. Although nucleotide sequence analysis showed that a point mutation in abl kinase domain resulted in amino acid substitution pro310ser in NS-1 cell line, no additional mutation was found in NS-2 cell line. Western blot analysis showed levels of both 210 KD BCR-ABL protein and BCR-ABL phosphorylation were similar in NS-1, NS-2 and K562 cells. Although two hours incubation with 10 mM imatinibin vitro did not show any detectable difference in levels of phosphorylation of BCR-ABL protein between NS-1 and NS-2 cell lines, sensitivity to imatinib measured by MTT assay showed that IC50 was 0.1 mM, 0.5 mM and 1.0mMin NS-1, NS-2 and K562 cell lines respectively. The measured IC50 of both NH-1 and NH-2 cell lines were much lower than reported plasma concentrations achieved by oral administration of 600 mg of imatinib (above 10 μM). The present results suggest difference between in vivo and in vitro sensitivity to imatinib indicate that alteration of bioavailability of imatinib possibly involved in clinical resistance to this drug, accumulations of BCR-ABL gene amplification and/or mutation are not necessarily a major reason of progressive clinical resistance to imatinib in BCR-ABL positive leukemia.


2020 ◽  
Vol 21 (12) ◽  
pp. 4210
Author(s):  
Maura Calvani ◽  
Annalisa Dabraio ◽  
Gennaro Bruno ◽  
Veronica De Gregorio ◽  
Marcella Coronnello ◽  
...  

β-adrenergic signaling is known to be involved in cancer progression; in particular, beta3-adrenoreceptor (β3-AR) is associated with different tumor conditions. Currently, there are few data concerning β3-AR in myeloid malignancies. Here, we evaluated β3-AR in myeloid leukemia cell lines and the effect of β3-AR antagonist SR59230A. In addition, we investigated the potential role of β3-AR blockade in doxorubicin resistance. Using flow cytometry, we assessed cell death in different in vitro myeloid leukemia cell lines (K562, KCL22, HEL, HL60) treated with SR59230A in hypoxia and normoxia; furthermore, we analyzed β3-AR expression. We used healthy bone marrow cells (BMCs), peripheral blood mononuclear cells (PBMCs) and cord blood as control samples. Finally, we evaluated the effect of SR59230A plus doxorubicin on K562 and K562/DOX cell lines; K562/DOX cells are resistant to doxorubicin and show P-glycoprotein (P-gp) overexpression. We found that SR59230A increased cancer cell lines apoptosis especially in hypoxia, resulting in selective activity for cancer cells; moreover, β3-AR expression was higher in malignancies, particularly under hypoxic condition. Finally, we observed that SR59230A plus doxorubicin increased doxorubicin resistance reversion mainly in hypoxia, probably acting on P-gp. Together, these data point to β3-AR as a new target and β3-AR blockade as a potential approach in myeloid leukemias.


Sign in / Sign up

Export Citation Format

Share Document