scholarly journals A novel self-lipid antigen targets human T cells against CD1c+ leukemias

2014 ◽  
Vol 211 (7) ◽  
pp. 1363-1377 ◽  
Author(s):  
Marco Lepore ◽  
Claudia de Lalla ◽  
S. Ramanjaneyulu Gundimeda ◽  
Heiko Gsellinger ◽  
Michela Consonni ◽  
...  

T cells that recognize self-lipids presented by CD1c are frequent in the peripheral blood of healthy individuals and kill transformed hematopoietic cells, but little is known about their antigen specificity and potential antileukemia effects. We report that CD1c self-reactive T cells recognize a novel class of self-lipids, identified as methyl-lysophosphatidic acids (mLPAs), which are accumulated in leukemia cells. Primary acute myeloid and B cell acute leukemia blasts express CD1 molecules. mLPA-specific T cells efficiently kill CD1c+ acute leukemia cells, poorly recognize nontransformed CD1c-expressing cells, and protect immunodeficient mice against CD1c+ human leukemia cells. The identification of immunogenic self-lipid antigens accumulated in leukemia cells and the observed leukemia control by lipid-specific T cells in vivo provide a new conceptual framework for leukemia immune surveillance and possible immunotherapy.

2017 ◽  
Author(s):  
Tobias X. Dong ◽  
Shivashankar Othy ◽  
Milton L. Greenberg ◽  
Amit Jairaman ◽  
Chijioke Akunwafo ◽  
...  

AbstractCa2+ influx through Orai1 channels is crucial for several T cell functions, but a role in regulating basal cellular motility has not been described. Here we show that inhibition of Orai1 channel activity increases average cell velocities by reducing the frequency of pauses in human T cells migrating through confined spaces, even in the absence of extrinsic cell contacts or antigen recognition. Utilizing a novel ratiometric genetically encoded cytosolic Ca2+ indicator, Salsa6f, which permits real-time monitoring of cytosolic Ca2+ along with cell motility, we show that spontaneous pauses during T cell motility in vitro and in vivo coincide with episodes of cytosolic Ca2+ signaling. Furthermore, lymph node T cells exhibited two types of spontaneous Ca2+ transients: short-duration “sparkles” and longer duration global signals. Our results demonstrate that spontaneous and self-peptide MHC-dependent activation of Orai1 ensures random walk behavior in T cells to optimize immune surveillance.


Blood ◽  
1984 ◽  
Vol 63 (5) ◽  
pp. 1015-1022 ◽  
Author(s):  
EA Machado ◽  
DA Gerard ◽  
CB Lozzio ◽  
BB Lozzio ◽  
JR Mitchell ◽  
...  

Abstract To study the influence of a biologic environment on cultured human leukemia cells, KG-1, KG-1a, and HL-60 cells were inoculated subcutaneously into newborn nude mice. The cells developed myelosarcomas at the site of inoculation and in lungs and kidneys. KG-1 and HL-60 myelosarcomas were successfully passaged through adult nude mice, whereas KG-1a tumors proliferated only after transplantation into newborn hosts. The human nature of the cells forming myelosarcomas in mice was assessed by chromosomal analyses and detection of cross- reactivity with an antibody to the human leukemia cell line K562. We undertook electron microscopic and cytochemical examinations of the cells proliferating in vitro and in the mice. The granules of KG-1 cells in vivo did not react for acid phosphatase, as observed in vitro, and the HL-60 cells proliferating in mice lost the perinuclear myeloperoxidase (MPO) demonstrated in cultured cells. Although the influence of an in vivo selection of cell subpopulations cannot be ruled out, the enzymatic changes are compatible with induced cell differentiation. Conclusive evidence of differentiation in vivo was observed in the KG-1a cell subline. The undifferentiated KG-1a blasts developed cytoplasmic granules and synthesized MPO during proliferation in vivo. These observations indicate that human leukemia cells from established cell lines proliferate in nude mice and may acquire new differentiated properties in response to the in vivo environment.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Tobias X Dong ◽  
Shivashankar Othy ◽  
Milton L Greenberg ◽  
Amit Jairaman ◽  
Chijioke Akunwafo ◽  
...  

Ca2+ influx through Orai1 channels is crucial for several T cell functions, but a role in regulating basal cellular motility has not been described. Here, we show that inhibition of Orai1 channel activity increases average cell velocities by reducing the frequency of pauses in human T cells migrating through confined spaces, even in the absence of extrinsic cell contacts or antigen recognition. Utilizing a novel ratiometric genetically encoded cytosolic Ca2+ indicator, Salsa6f, which permits real-time monitoring of cytosolic Ca2+ along with cell motility, we show that spontaneous pauses during T cell motility in vitro and in vivo coincide with episodes of cytosolic Ca2+ signaling. Furthermore, lymph node T cells exhibited two types of spontaneous Ca2+ transients: short-duration ‘sparkles’ and longer duration global signals. Our results demonstrate that spontaneous and self-peptide MHC-dependent activation of Orai1 ensures random walk behavior in T cells to optimize immune surveillance.


Cell Research ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 21-33 ◽  
Author(s):  
Rongqun Guo ◽  
Fangxiao Hu ◽  
Qitong Weng ◽  
Cui Lv ◽  
Hongling Wu ◽  
...  

AbstractAchievement of immunocompetent and therapeutic T lymphopoiesis from pluripotent stem cells (PSCs) is a central aim in T cell regenerative medicine. To date, preferentially reconstituting T lymphopoiesis in vivo from PSCs remains a practical challenge. Here we documented that synergistic and transient expression of Runx1 and Hoxa9 restricted in the time window of endothelial-to-hematopoietic transition and hematopoietic maturation stages in a PSC differentiation scheme (iR9-PSC) in vitro induced preferential generation of engraftable hematopoietic progenitors capable of homing to thymus and developing into mature T cells in primary and secondary immunodeficient recipients. Single-cell transcriptome and functional analyses illustrated the cellular trajectory of T lineage induction from PSCs, unveiling the T-lineage specification determined at as early as hemogenic endothelial cell stage and identifying the bona fide pre-thymic progenitors. The induced T cells distributed normally in central and peripheral lymphoid organs and exhibited abundant TCRαβ repertoire. The regenerative T lymphopoiesis restored immune surveillance in immunodeficient mice. Furthermore, gene-edited iR9-PSCs produced tumor-specific T cells in vivo that effectively eradicated tumor cells. This study provides insight into universal generation of functional and therapeutic T cells from the unlimited and editable PSC source.


Leukemia ◽  
2006 ◽  
Vol 21 (1) ◽  
pp. 136-142 ◽  
Author(s):  
M Ninomiya ◽  
A Abe ◽  
A Katsumi ◽  
J Xu ◽  
M Ito ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 842-842 ◽  
Author(s):  
Loredana Ruggeri ◽  
Mauro Di Ianni ◽  
Elena Urbani ◽  
Antonella Mancusi ◽  
Franca Falzetti ◽  
...  

Abstract Posttransplant relapse is still a major cause of treatment failure in high-risk acute leukemia. Evidence from experimental bone marrow transplantation (BMT) showed coinfusion of conventional T lymphocytes (Tcons) with regulatory T lymphocytes (Tregs) suppressed lethal Graft-versus-Host Disease (GvHD) without impairing the Graft-versus-Leukemia (GvL) effect (Edinger et al., Nat Med. 2003;9:1144-1150). In HLA haploidentical transplantation for acute leukemia we demonstrated that donor-derived natural Tregs, coinfused with Tcons, protected recipients against GvHD (Di Ianni et al., Blood 2011, 117:3921-3928) and largely prevented posttransplant leukemia relapse, as only 5% of evaluable patients relapsed (Martelli et al., Blood 2014, 124:638-44). The mechanism by which the GvL effect is maintained in the absence of GvHD is still unknown. In humans, naïve CD45RA+ Tregs express CXCR4 and preferentially localize to the bone marrow while memory CD45RO+ Tregs display lower CXCR4 expression and home to the periphery (Booth et al., J Immunol. 2010;184:4317-4326). Since peripheral blood Tregs to be used for adoptive immunotherapy are CD45RO+, we hypothesized that GvL without GvHD might be due to unopposed Tcon alloreactivity in the bone marrow combined with regulated T cell alloreactivity at the periphery. Immunodeficient NSG mice (a total of 40 for each experimental group) received human myeloid or lymphoblastic leukemia (3x106) and HLA mismatched Tregs/Tcons (3x106). Mice that received leukemia and Tcons (without Tregs) cleared leukemia but died of GvHD. Human T cells harvested from their BM, spleen and liver were predominantly (90%) CD8+ and displayed potent alloreactivity (by 51-chromium release at an E:T ratio of 5:1) against human leukemia (lysis = 50% ± 15), autologous to leukemia PHA blasts (lysis = 60% ± 10) and mouse Con A blasts (lysis = 40% ± 8). Mice that received human leukemia and Tcons plus Tregs were rescued from leukemia and survived without GvHD. Human T cells harvested from spleen and liver were composed of CD8+ T cells (40%) and CD4+/FOXP3- T cells (60%). Despite their FOXP3 negativity, purified CD4+ T cells had retained their regulatory function as they inhibited mixed lymphocyte reaction (by 50% at a Tcon/Treg ratio of 1:2). Purified CD8+ T cells displayed no alloreactivity against human leukemia, PHA blasts and mouse Con A blasts. In contrast, human T cells harvested from BM were still predominantly CD8+ and still displayed potent alloreactivity against human leukemia and autologous to leukemia PHA blasts and mouse ConA blasts, suggesting Tcons had retained their alloantigen recognition against human and mouse MHC. Finally, in mice treated with Tregs alone, human T cells were recovered only in the spleen and liver, they displayed a CD4+/FOXP3- phenotype and inhibited mixed lymphocyte reaction. No human T cells were found in the bone morrow, thus showing human CD45RO+ Tregs do not home to the bone marrow. In conclusion, Treg/Tcon adoptive immunotherapy mediates GvL effect in the absence of GvHD because Tcons that home to the bone marrow exert unopposed alloantigen recognition, while Tcons that home to the periphery are blocked by Tregs. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4267-4267
Author(s):  
Tomoki Naoe ◽  
Manabu Ninomiya ◽  
Akihiro Abe ◽  
Akira Katsumi ◽  
Jinglan Xu ◽  
...  

Abstract The cellular components of the hematopoietic stem cell (HSC) niche have been gradually identified. However, the niche for malignant hematopoiesis remains to be elucidated. Here, using human leukemia cells which could be transplanted to immunodeficient mice, we studied the in vivo homing, proliferating and surviving sites by immunohistopathology, compared with the corresponding sites for cord blood CD34+ (CBCD34+) cells. The human leukemia cells initially localized on the surface of osteoblasts in the epiphysial region, and expanded to the inner vascular and diaphysial regions within 4 weeks. The percentage of CD34+ leukemia cells in the BM was transiently increased up to 50% and associated with the entry to S phase of the cell-cycle. In vivo BrdU-labeling showed that the epiphysis was the most active site for leukemia cell proliferation. CBCD34+ cells show the similar pattern of homing and proliferation to leukemia samples. After high-dose administration of Ara-C, residual leukemia cells were localized in the perivascular endothelium as well as in contact with the trabecular endosteum. These findings suggest that xenotransplantation into immunodeficient mice provides a useful model to study the leukemia niche, and that disruption of this niche can potentially facilitate the anti-leukemia effects of various therapies.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3025-3025
Author(s):  
Silke Landmeier ◽  
Bianca Altvater ◽  
Sibylle Pscherer ◽  
Jutta Meltzer ◽  
Josef Vormoor ◽  
...  

Abstract Abstract 3025 Poster Board II-1001 Due to its restriction to the B-cell lineage and high surface expression in B-cell malignancies, CD19 is an attractive target antigen for immunological strategies in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). While preclinical in vivo studies of CD19-specific cellular immunotherapy have generally used xenografts from human CD19+ leukemia cell lines, primary leukemia cells are likely to more closely mimic the disease in humans and allow to differentiate between standard and high risk situations. Therefore, we investigated the in vivo sensitivity of human leukemic bone marrow to adoptive immunotherapy with gene-modified CD19-specific T cells. Among 15 primary leukemias obtained from the bone marrow of pediatric patients at diagnosis, 10 were successfully engrafted in NOD/scid mice by intrafemoral injection within 6 to 20 weeks. For therapeutic experiments, we focused on one standard risk leukemia, characterized by a rapid and sustained response to multiagent chemotherapy, and on a leukemia bearing the high-risk feature of an MLL rearrangement, which was refractory to standard treatment. Titration experiments demonstrated reliable engraftment of 1×104 leukemic cells per mouse. For CD19-directed T-cell therapy, cytotoxic T cells (CTLs) with native specificity for Epstein-Barr virus antigens were expanded from 4 healthy donors and transduced to express either a codon-optimized CD19-specific chimeric antigen receptor (CAR) containing the intracellular signaling domain of the TCRz chain (CD19-z), or a control CAR directed against the neuroectodermal antigen GD2 (14.G2a-z). Costimulatory domains now commonly used to ensure sustained T-cell activation via CARs were not included, since previous studies have shown that CAR activity in virus-specific CTLs does not benefit from additional signaling elements. CTLs had a uniform CD8+ effector memory T-cell phenotype (CD45RO+, CCR7-), and CAR surface expression was 73±21%, range 32-93% (CD19-z, n=9) and 18±13%, range 6-35% (14.G2a-z, n=5). In vitro cytotoxicity experiments confirmed specific lysis of the CD19+ leukemia cell lines REH (51Cr release 59.7±7.2% at an effector target ratio of 20:1) and SupB15 (66.7±8.6) as well as primary CD19+ leukemic cells from 5 pediatric patients (47.2±13.2%), in the absence of background lysis by 14.G2a-z-transduced control CTLs. 1×104 leukemic cells per mouse from primary engrafted mice were transferred into further cohorts of NOD/scid mice by secondary intrafemoral transplantation, followed by adoptive transfer of 4 doses of 5×106 CTLs via tail vein injection on days 1, 4, 8, and 11. IL-2 (500 IU/mouse) was administered twice-weekly, and sequential murine bone marrow aspirates were analyzed for human leukemia engraftment by flow cytometry using human CD45 and CD19-specific antibodies starting 3 weeks after transplantation. CD19z CTLs prevented engraftment of the standard risk leukemia in 3 of 4 mice, while 3 of 4 control mice developed the leukemia (p = 0.158, Log Rank/Mantel-Cox Test). Moreover, while the MLL-rearranged human leukemia became detectable in the bone marrow of 4 of 5 control mice, followed by overt and fatal leukemia, 5 of 8 mice receiving transfusions of CD19-z transduced CTLs remained disease-free (p = 0.067), and 6 of 8 remained alive, one of them with detectable leukemia cells (p = 0.054) (see Figure). Thus, adoptive transfer of CD19-redirected CTLs efficiently delayed or prevented engraftment of both standard and high risk ALLs in mice and therefore provides a promising treatment option for patients with BCP-ALL refractory to standard treatment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1984 ◽  
Vol 63 (5) ◽  
pp. 1015-1022
Author(s):  
EA Machado ◽  
DA Gerard ◽  
CB Lozzio ◽  
BB Lozzio ◽  
JR Mitchell ◽  
...  

To study the influence of a biologic environment on cultured human leukemia cells, KG-1, KG-1a, and HL-60 cells were inoculated subcutaneously into newborn nude mice. The cells developed myelosarcomas at the site of inoculation and in lungs and kidneys. KG-1 and HL-60 myelosarcomas were successfully passaged through adult nude mice, whereas KG-1a tumors proliferated only after transplantation into newborn hosts. The human nature of the cells forming myelosarcomas in mice was assessed by chromosomal analyses and detection of cross- reactivity with an antibody to the human leukemia cell line K562. We undertook electron microscopic and cytochemical examinations of the cells proliferating in vitro and in the mice. The granules of KG-1 cells in vivo did not react for acid phosphatase, as observed in vitro, and the HL-60 cells proliferating in mice lost the perinuclear myeloperoxidase (MPO) demonstrated in cultured cells. Although the influence of an in vivo selection of cell subpopulations cannot be ruled out, the enzymatic changes are compatible with induced cell differentiation. Conclusive evidence of differentiation in vivo was observed in the KG-1a cell subline. The undifferentiated KG-1a blasts developed cytoplasmic granules and synthesized MPO during proliferation in vivo. These observations indicate that human leukemia cells from established cell lines proliferate in nude mice and may acquire new differentiated properties in response to the in vivo environment.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A663-A663
Author(s):  
Keegan Cooke ◽  
Juan Estrada ◽  
Jinghui Zhan ◽  
Jonathan Werner ◽  
Fei Lee ◽  
...  

BackgroundNeuroendocrine tumors (NET), including small cell lung cancer (SCLC), have poor prognosis and limited therapeutic options. AMG 757 is an HLE BiTE® immune therapy designed to redirect T cell cytotoxicity to NET cells by binding to Delta-like ligand 3 (DLL3) expressed on the tumor cell surface and CD3 on T cells.MethodsWe evaluated activity of AMG 757 in NET cells in vitro and in mouse models of neuroendocrine cancer in vivo. In vitro, co-cultures of NET cells and human T cells were treated with AMG 757 in a concentration range and T cell activation, cytokine production, and tumor cell killing were assessed. In vivo, AMG 757 antitumor efficacy was evaluated in xenograft NET and in orthotopic models designed to mimic primary and metastatic SCLC lesions. NSG mice bearing established NET were administered human T cells and then treated once weekly with AMG 757 or control HLE BiTE molecule; tumor growth inhibition was assessed. Pharmacodynamic effects of AMG 757 in tumors were also evaluated in SCLC models following a single administration of human T cells and AMG 757 or control HLE BiTE molecule.ResultsAMG 757 induced T cell activation, cytokine production, and potent T cell redirected killing of DLL3-expressing SCLC, neuroendocrine prostate cancer, and other DLL3-expressing NET cell lines in vitro. AMG 757-mediated redirected lysis was specific for DLL3-expressing cells. In patient-derived xenograft and orthotopic models of SCLC, single-dose AMG 757 effectively engaged human T cells administered systemically, leading to a significant increase in the number of human CD4+ and CD8+ T cells in primary and metastatic tumor lesions. Weekly administration of AMG 757 induced significant tumor growth inhibition of SCLC (figure 1) and other NET, including complete regression of established tumors and clearance of metastatic lesions. These findings warranted evaluation of AMG 757 (NCT03319940); the phase 1 study includes dose exploration (monotherapy and in combination with pembrolizumab) and dose expansion (monotherapy) in patients with SCLC (figure 2). A study of AMG 757 in patients with neuroendocrine prostate cancer is under development based on emerging data from the ongoing phase 1 study.Abstract 627 Figure 1AMG 757 Significantly reduced tumor growth in orthotopic SCLC mouse modelsAbstract 627 Figure 2AMG 757 Phase 1 study designConclusionsAMG 757 engages and activates T cells to kill DLL3-expressing SCLC and other NET cells in vitro and induces significant antitumor activity against established xenograft tumors in mouse models. These preclinical data support evaluation of AMG 757 in clinical studies of patients with NET.Ethics ApprovalAll in vivo work was conducted under IACUC-approved protocol #2009-00046.


Sign in / Sign up

Export Citation Format

Share Document