scholarly journals Ca2+–mitochondria axis drives cell division in hematopoietic stem cells

2018 ◽  
Vol 215 (8) ◽  
pp. 2097-2113 ◽  
Author(s):  
Terumasa Umemoto ◽  
Michihiro Hashimoto ◽  
Takayoshi Matsumura ◽  
Ayako Nakamura-Ishizu ◽  
Toshio Suda

Most of the hematopoietic stem cells (HSCs) within the bone marrow (BM) show quiescent state with a low mitochondrial membrane potential (ΔΨm). In contrast, upon stress hematopoiesis, HSCs actively start to divide. However, the underlying mechanism for the initiation of HSC division still remains unclear. To elucidate the mechanism underlying the transition of cell cycle state in HSCs, we analyzed the change of mitochondria in HSCs after BM suppression induced by 5-fluoruracil (5-FU). We found that HSCs initiate cell division after exhibiting enhanced ΔΨm as a result of increased intracellular Ca2+ level. Although further activation of Ca2+–mitochondria pathway led to loss of HSCs after cell division, the appropriate suppression of intracellular Ca2+ level by exogenous adenosine or Nifedipine, a Ca2+ channel blocker, prolonged cell division interval in HSCs, and simultaneously achieved both cell division and HSC maintenance. Collectively, our results indicate that the Ca2+–mitochondria pathway induces HSC division critically to determine HSC cell fate.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. SCI-19-SCI-19
Author(s):  
Toshio Suda

Abstract Hematopoietic stem cells (HSCs) play a key role in the lifelong maintenance of hematopoiesis through self-renewal and multi-lineage differentiation. Adult HSCs reside within a specialized microenvironment of the bone marrow (BM), called "niche", in which they are maintained in a quiescent state in cell cycle. Most of HSCs within BM show quiescence under the hypoxic niche. Since the loss of HSC quiescence leads to the exhaustion or aging of stem cells through excess cell division, the regulation of quiescence in HSCs is essential for hematopoietic homeostasis. On the other hand, cellular metabolism has been suggested to play a critical role in many biological processes including the regulation of stem cell properties and functions. However, the metabolic condition and adaptation of stem cells remain largely unaddressed. First, we have analyzed HSC metabolism using metabolomics approaches. With step-wise differentiation of stem cells, the cell metabolism associated with each differentiation stage may be different. A feature of quiescent HSCs is their low baseline energy production; quiescent HSCs rely on glycolysis and exhibit low mitochondrial membrane potential (ΔΨm). Likewise, HSCs with a low ΔΨm show higher reconstitution activity in BM hematopoiesis, compared to cells with high ΔΨm. By contrast, upon stress hematopoiesis, HSCs actively divide and proliferate. However, the underlying mechanism for the initiation of HSC division still remains unclear. In order to elucidate the mechanism underlying the transition of cell cycle state in HSCs, we analyzed the change of mitochondria activity in HSCs after BM suppression induced by 5-fluoruracil (5-FU). Upon 5-FU treatment, cycling progenitors are depleted and then quiescent HSCs start to divide. We found that HSCs initiate cell division after exhibiting enhanced ΔΨm, as a result of increased intracellular Ca2+ level. We hypothesize that extracellular adenosine, derived from hematopoietic progenitors, inhibits the calcium influx and mitochondrial metabolism. While further activation of Ca2+-mitochondria pathway led to loss of the stem cell function after cell division, the appropriate suppression of intracellular Ca2+ level by nifedipine, a blocker of L-type voltage-gated Ca2+ channels, prolonged cell division interval in HSCs, and simultaneously achieved both cell division and HSC maintenance (self-renewal division). Thus, our results indicate that the adenosine-Ca2+-mitochondria pathway induces HSC division critically to determine HSC cell fate. Next, to examine the mitochondria oxidative metabolism and purinergic pathways, we introduced the study on a tumor suppressor, Folliculin (FLCN). Conditional deletion of FLCN in HSC compartment using the Mx1-Cre or Vav-iCre system disrupted HSC quiescence and BM homeostasis dependently on the lysosomal stress response induced by TFE3. Together all, we propose that the change in cellular metabolism involving mitochondria is crucial for HSC homeostasis in the stress settings. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Author(s):  
Dirk Loeffler ◽  
Florin Schneiter ◽  
Weijia Wang ◽  
Arne Wehling ◽  
Tobias Kull ◽  
...  

Understanding human hematopoietic stem cell fate control is important for their improved therapeutic manipulation. Asymmetric cell division, the asymmetric inheritance of factors during division instructing future daughter cell fates, was recently described in mouse blood stem cells. In human blood stem cells, the possible existence of asymmetric cell division remained unclear due to technical challenges in its direct observation. Here, we use long-term quantitative single-cell imaging to show that lysosomes and active mitochondria are asymmetrically inherited in human blood stem cells and that their inheritance is a coordinated, non-random process. Furthermore, multiple additional organelles, including autophagosomes, mitophagosomes, autolysosomes and recycling endosomes show preferential asymmetric co-segregation with lysosomes. Importantly, asymmetric lysosomal inheritance predicts future asymmetric daughter cell cycle length, differentiation and stem cell marker expression, while asymmetric inheritance of active mitochondria correlates with daughter metabolic activity. Hence, human hematopoietic stem cell fates are regulated by asymmetric cell division, with both mechanistic evolutionary conservation and differences to the mouse system.


2018 ◽  
Vol 19 (7) ◽  
pp. 2122 ◽  
Author(s):  
Geoffrey Brown ◽  
Rhodri Ceredig ◽  
Panagiotis Tsapogas

Evidence from studies of the behaviour of stem and progenitor cells and of the influence of cytokines on their fate determination, has recently led to a revised view of the process by which hematopoietic stem cells and their progeny give rise to the many different types of blood and immune cells. The new scenario abandons the classical view of a rigidly demarcated lineage tree and replaces it with a much more continuum-like view of the spectrum of fate options open to hematopoietic stem cells and their progeny. This is in contrast to previous lineage diagrams, which envisaged stem cells progressing stepwise through a series of fairly-precisely described intermediate progenitors in order to close down alternative developmental options. Instead, stem and progenitor cells retain some capacity to step sideways and adopt alternative, closely related, fates, even after they have “made a lineage choice.” The stem and progenitor cells are more inherently versatile than previously thought and perhaps sensitive to lineage guidance by environmental cues. Here we examine the evidence that supports these views and reconsider the meaning of cell lineages in the context of a continuum model of stem cell fate determination and environmental modulation.


2014 ◽  
Vol 19 (3) ◽  
pp. 239-253 ◽  
Author(s):  
Shohei Murakami ◽  
Ritsuko Shimizu ◽  
Paul-Henri Romeo ◽  
Masayuki Yamamoto ◽  
Hozumi Motohashi

Blood ◽  
2009 ◽  
Vol 114 (18) ◽  
pp. 3783-3792 ◽  
Author(s):  
Xiaoxia Hu ◽  
Hongmei Shen ◽  
Chen Tian ◽  
Hui Yu ◽  
Guoguang Zheng ◽  
...  

Abstract The predominant outgrowth of malignant cells over their normal counterparts in a given tissue is a shared feature for all types of cancer. However, the impact of a cancer environment on normal tissue stem and progenitor cells has not been thoroughly investigated. We began to address this important issue by studying the kinetics and functions of hematopoietic stem and progenitor cells in mice with Notch1-induced leukemia. Although hematopoiesis was progressively suppressed during leukemia development, the leukemic environment imposed distinct effects on hematopoietic stem and progenitor cells, thereby resulting in different outcomes. The normal hematopoietic stem cells in leukemic mice were kept in a more quiescent state but remained highly functional on transplantation to nonleukemic recipients. In contrast, the normal hematopoietic progenitor cells in leukemic mice demonstrated accelerated proliferation and exhaustion. Subsequent analyses on multiple cell-cycle parameters and known regulators (such as p21, p27, and p18) further support this paradigm. Therefore, our current study provides definitive evidence and plausible underlying mechanisms for hematopoietic disruption but reversible inhibition of normal hematopoietic stem cells in a leukemic environment. It may also have important implications for cancer prevention and treatment in general.


2016 ◽  
Vol 104 (3) ◽  
pp. 324-329 ◽  
Author(s):  
Shin’ichiro Yasunaga ◽  
Yoshinori Ohno ◽  
Naoto Shirasu ◽  
Bo Zhang ◽  
Kyoko Suzuki-Takedachi ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1478-1478
Author(s):  
Kathryn M. Shinnick ◽  
Kelly A. Barry ◽  
Elizabeth A. Eklund ◽  
Thomas J. McGarry

Abstract Abstract 1478 Poster Board I-501 Hematopoietic stem cells supply the circulation with mature blood cells throughout life. Progenitor cell division and differentiation must be carefully balanced in order to supply the proper numbers and proportions of mature cells. The mechanisms that control the choice between continued cell division and terminal differentiation are incompletely understood. The unstable regulatory protein Geminin is thought to maintain cells in an undifferentiated state while they proliferate. Geminin is a bi-functional protein. It limits the extent of DNA replication to one round per cell cycle by binding and inhibiting the essential replication factor Cdt1. Loss of Geminin leads to replication abnormalities that activate the DNA replication checkpoint and the Fanconi Anemia (FA) pathway. Geminin also influences patterns of cell differentiation by interacting with Homeobox (Hox) transcription factors and chromatin remodeling proteins. To examine how Geminin affects the proliferation and differentiation of hematopoietic stem cells, we created a mouse strain in which Geminin is deleted from the proliferating cells of the bone marrow. Geminin deletion has profound effects on all three hematopoietic lineages. The production of mature erythrocytes and leukocytes is drastically reduced and the animals become anemic and neutropenic. In contrast, the population of megakaryocytes is dramatically expanded and the animals develop thrombocytosis. Interestingly, the number of c-Kit+ Sca1+ Lin- (KSL) stem cells is maintained, at least in the short term. Myeloid colony forming cells are also preserved, but the colonies that grow are smaller. We conclude that Geminin deletion causes a maturation arrest in some lineages and directs cells down some differentiation pathways at the expense of others. We are now testing how Geminin loss affects cell cycle checkpoint pathways, whether Geminin regulates hematopoietic transcription factors, and whether Geminin deficient cells give rise to leukemias or lymphomas. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Author(s):  
Tatyana Grinenko ◽  
Anne Eugster ◽  
Lars Thielecke ◽  
Beata Ramazs ◽  
Anja Krueger ◽  
...  

SummaryHematopoietic stem cells (HSCs) continuously replenish all blood cell types through a series of differentiation steps that involve the generation of lineage-committed progenitors as well as necessary expansion due to repeated cell divisions. However, whether cell division in HSCs precedes differentiation is unclear. To this end, we used an HSC cell tracing approach and Ki67RFP knock-in mice to assess simultaneously divisional history, cell cycle progression, and differentiation of adult HSCs in vivo. Our results reveal that HSCs are able to differentiate into restricted progenitors, especially common myeloid progenitors, restricted megakaryocyte-erythroid progenitors (PreMEs) and pre-megakaryocyte progenitors (PreMegs), without undergoing cell division and even before entering the S phase of the cell cycle. Additionally, the phenotype of the undivided but differentiated progenitors correlated with expression of lineage-specific genes that manifested as functional differences between HSCs and restricted progenitors. Thus, HSC fate decisions appear to be uncoupled from physical cell division. Our results facilitate a better understanding of the mechanisms that control fate decisions in hematopoietic cells. Our data, together with separate findings from embryonic stem cells, suggest that cell division and fate choice are independent processes in pluripotent and multipotent stem cells.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2484-2484 ◽  
Author(s):  
Larisa V. Kovtonyuk ◽  
Peter Ashcroft ◽  
Gianluca Spaltro ◽  
Nageswara Rao Tata ◽  
Radek C. Skoda ◽  
...  

Introduction: Definitive hematopoietic stem cells (HSCs) sustain blood production from fetal development throughout life. In mice, most of steady state, young adult HSCs are in the G0 phase of cell cycle (quiescence), and are estimated to divide roughly once a month. Daily hematopoietic production is thus mainly sustained by highly proliferative downstream hematopoietic progenitor cells (HPCs). Aged haematopoiesis was demonstrated to be distinct from young haematopoiesis in various aspects such as i) a shift from lymphopoiesis to myelopoiesis, ii) functional decline of HSCs (self-renewal, homing), and iii) HSCs pool expansion. While several studies attempted to address whether changes in HSCs turnover during aging can account for the distinct aging associated phenotype and function, it remained to be determined whether aged HSCs overall cycle more or less frequently than young HSCs. Methods: To construct data-based, quantitative models, we measured turnover rates and compartment sizes of populations of HSCs, HSPCs and granulopoiesis/granulocytes, i.e. a post-mitotic mature hematopoietic linage with a short half-life. We examined four age groups: 3 week, 2 month, 1 year and 2 year old mice. Mice in each group were i.p. injected every 4 hours with 1 mcg EdU up to a maximum time of 48 hours. HSC, HSPC and granulopoiesis/granoulocyte compartment sizes and snapshot cell-cycle analysis was performed by FACS at multiple sampling points in BM and peripheral blood (PB), respectively. Based on this data, we built a mathematical model of HSC turn-over and HSPC differentiation during ageing. Moreover, we evaluated HSC cycling by CFSE dilution in steady-state transplantation experiments (as described before; Takizawa et al., J Exp Med 2011). Results: In line with previous reports, the HSCs compartment size gradually increased with age from 3wk old mice to 2 year old mice. In sharp contrast, cycling activity of HSCs as determined by EdU incorporation decreased gradually and significantly with increasing age. This was driven by decreased activation from the quiescent state, while the time that actively cycling HSCs require to progress through cell-division remains constant with age. Multipotent Progenitor (MPP) cycling showed a non-significant trend towards slower turn-over. These results were confirmed by complementary CFSE-dilution experiments. Mathematical modeling of HSC proliferation and differentiation revealed a higher probability of self-renewing divisions in 3 week old mice as compared to 2 month, 1 and 2 year old mice, with the latter both having nearly equal chances of self-renewing versus differentiating divisions. Conclusions: Our data clarifies the long-standing question, how the HSC pool increases with age. Instead of an increase in active cycling, an increase in HSC quiescence is responsible for the increased size of the HSCs pool in aging. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document