scholarly journals Active PI3K abrogates central tolerance in high-avidity autoreactive B cells

2019 ◽  
Vol 216 (5) ◽  
pp. 1135-1153 ◽  
Author(s):  
Sarah A. Greaves ◽  
Jacob N. Peterson ◽  
Pamela Strauch ◽  
Raul M. Torres ◽  
Roberta Pelanda

Autoreactive B cells that bind self-antigen with high avidity in the bone marrow undergo mechanisms of central tolerance that prevent their entry into the peripheral B cell population. These mechanisms are breached in many autoimmune patients, increasing their risk of B cell–mediated autoimmune diseases. Resolving the molecular pathways that can break central B cell tolerance could therefore provide avenues to diminish autoimmunity. Here, we show that B cell–intrinsic expression of a constitutively active form of PI3K-P110α by high-avidity autoreactive B cells of mice completely abrogates central B cell tolerance and further promotes these cells to escape from the bone marrow, differentiate in peripheral tissue, and undergo activation in response to self-antigen. Upon stimulation with T cell help factors, these B cells secrete antibodies in vitro but remain unable to secrete autoantibodies in vivo. Overall, our data demonstrate that activation of the PI3K pathway leads high-avidity autoreactive B cells to breach central, but not late, stages of peripheral tolerance.

2021 ◽  
Vol 118 (16) ◽  
pp. e2021570118
Author(s):  
Thiago Alves da Costa ◽  
Jacob N. Peterson ◽  
Julie Lang ◽  
Jeremy Shulman ◽  
Xiayuan Liang ◽  
...  

Central B cell tolerance, the process restricting the development of many newly generated autoreactive B cells, has been intensely investigated in mouse cells while studies in humans have been hampered by the inability to phenotypically distinguish autoreactive and nonautoreactive immature B cell clones and the difficulty in accessing fresh human bone marrow samples. Using a human immune system mouse model in which all human Igκ+ B cells undergo central tolerance, we discovered that human autoreactive immature B cells exhibit a distinctive phenotype that includes lower activation of ERK and differential expression of CD69, CD81, CXCR4, and other glycoproteins. Human B cells exhibiting these characteristics were observed in fresh human bone marrow tissue biopsy specimens, although differences in marker expression were smaller than in the humanized mouse model. Furthermore, the expression of these markers was slightly altered in autoreactive B cells of humanized mice engrafted with some human immune systems genetically predisposed to autoimmunity. Finally, by treating mice and human immune system mice with a pharmacologic antagonist, we show that signaling by CXCR4 is necessary to prevent both human and mouse autoreactive B cell clones from egressing the bone marrow, indicating that CXCR4 functionally contributes to central B cell tolerance.


2003 ◽  
Vol 198 (9) ◽  
pp. 1415-1425 ◽  
Author(s):  
Helen Ferry ◽  
Margaret Jones ◽  
David J. Vaux ◽  
Ian S.D. Roberts ◽  
Richard J. Cornall

Systemic autoimmune disease is frequently characterized by the production of autoantibodies against widely expressed intracellular self-antigens, whereas B cell tolerance to ubiquitous and highly expressed extracellular antigens is strictly enforced. To test for differences in the B cell response to intracellular and extracellular self-antigens, we sequestered a tolerogenic cell surface antigen intracellularly by addition of a two amino acid endoplasmic reticulum (ER) retention signal. In contrast to cell surface antigen, which causes the deletion of autoreactive B cells, the intracellularly sequestered self-antigen failed to induce B cell tolerance and was instead autoimmunogenic. The intracellular antigen positively selected antigen-binding B cells to differentiate into B1 cells and induced large numbers of IgM autoantibody-secreting plasma cells in a T-independent manner. By analyzing the impact of differences in subcellular distribution independently from other variables, such as B cell receptor affinity, antigen type, or tissue distribution, we have established that intracellular localization of autoantigen predisposes for autoantibody production. These findings help explain why intracellular antigens are targeted in systemic autoimmune diseases.


2020 ◽  
Author(s):  
Jeremy F. Brooks ◽  
Raymond J. Steptoe

AbstractThe concerted actions of multiple tolerance checkpoints limit the possibility of immune attack against self-antigens. For B cells, purging of autoreactivity from the developing repertoire has been almost exclusively studied using B-cell receptor transgenic models. Analyses have generally agreed that central and peripheral tolerance occurs in the form of deletion, receptor editing and anergy. However, when and where these processes occur in a normal polyclonal repertoire devoid of B-cell receptor engineering remain unclear. Here, employing sensitive tools that alleviate the need for B-cell receptor engineering, we track the development of self-reactive B cells and challenge whether deletion plays a meaningful role in B-cell tolerance. We find self-reactive B cells can mature unperturbed by ubiquitous self-antigen expression but, even in the presence of T-cell help, are robustly anergic in the periphery. These studies query the prominence attributed to central and peripheral deletion by most BCR transgenic studies and suggest that other mechanisms predominantly govern B cell tolerance.


2007 ◽  
Vol 204 (12) ◽  
pp. 2853-2864 ◽  
Author(s):  
Jennifer L. Lamoureux ◽  
Lisa C. Watson ◽  
Marie Cherrier ◽  
Patrick Skog ◽  
David Nemazee ◽  
...  

The initial B cell repertoire contains a considerable proportion of autoreactive specificities. The first major B cell tolerance checkpoint is at the stage of the immature B cell, where receptor editing is the primary mode of eliminating self-reactivity. The cells that emigrate from the bone marrow have a second tolerance checkpoint in the transitional compartment in the spleen. Although it is known that the second checkpoint is defective in lupus, it is not clear whether there is any breakdown in central B cell tolerance in the bone marrow. We demonstrate that receptor editing is less efficient in the lupus-prone strain MRL/lpr. In an in vitro system, when receptor-editing signals are given to bone marrow immature B cells by antiidiotype antibody or after in vivo exposure to membrane-bound self-antigen, MRL/lpr 3-83 transgenic immature B cells undergo less endogenous rearrangement and up-regulate recombination activating gene messenger RNA to a lesser extent than B10 transgenic cells. CD19, along with immunoglobulin M, is down-regulated in the bone marrow upon receptor editing, but the extent of down-regulation is fivefold less in MRL/lpr mice. Less efficient receptor editing could allow some autoreactive cells to escape from the bone marrow in lupus-prone mice, thus predisposing to autoimmunity.


2005 ◽  
Vol 201 (10) ◽  
pp. 1659-1667 ◽  
Author(s):  
Jonathan Samuels ◽  
Yen-Shing Ng ◽  
Claire Coupillaud ◽  
Daniel Paget ◽  
Eric Meffre

Autoantibody production is a characteristic of most autoimmune diseases including rheumatoid arthritis (RA). The role of these autoantibodies in the pathogenesis of RA remains elusive, but they appear in the serum many years before the onset of clinical disease suggesting an early break in B cell tolerance. The stage of B cell development at which B cell tolerance is broken in RA remains unknown. We previously established in healthy donors that most polyreactive developing B cells are silenced in the bone marrow, and additional autoreactive B cells are removed in the periphery. B cell tolerance in untreated active RA patients was analyzed by testing the specificity of recombinant antibodies cloned from single B cells. We find that autoreactive B cells fail to be removed in all six RA patients and represent 35–52% of the mature naive B cell compartment compared with 20% in healthy donors. In some patients, RA B cells express an increased proportion of polyreactive antibodies that can recognize immunoglobulins and cyclic citrullinated peptides, suggesting early defects in central B cell tolerance. Thus, RA patients exhibit defective B cell tolerance checkpoints that may favor the development of autoimmunity.


2021 ◽  
Vol 22 (24) ◽  
pp. 13560
Author(s):  
Benjamin Y. F. So ◽  
Desmond Y. H. Yap ◽  
Tak Mao Chan

Membranous nephropathy (MN) is an important cause of nephrotic syndrome and chronic kidney disease (CKD) in adults. The pathogenic significance of B cells in MN is increasingly recognized, especially following the discovery of various autoantibodies that target specific podocytic antigens and the promising treatment responses seen with B cell depleting therapies. The presence of autoreactive B cells and autoantibodies that bind to antigens on podocyte surfaces are characteristic features of MN, and are the result of breaches in central and peripheral tolerance of B lymphocytes. These perturbations in B cell tolerance include altered B lymphocyte subsets, dysregulation of genes that govern immunoglobulin production, aberrant somatic hypermutation and co-stimulatory signalling, abnormal expression of B cell-related cytokines, and increased B cell infiltrates and organized tertiary lymphoid structures within the kidneys. An understanding of the role of B cell tolerance and homeostasis may have important implications for patient management in MN, as conventional immunosuppressive treatments and novel B cell-targeted therapies show distinct effects on proliferation, differentiation and reconstitution in different B cell subsets. Circulating B lymphocytes and related cytokines may serve as potential biomarkers for treatment selection, monitoring of therapeutic response and prediction of disease relapse. These recent advances in the understanding of B cell tolerance in MN have provided greater insight into its immunopathogenesis and potential novel strategies for disease monitoring and treatment.


2019 ◽  
Vol 217 (2) ◽  
Author(s):  
M. Fleur du Pré ◽  
Jana Blazevski ◽  
Alisa E. Dewan ◽  
Jorunn Stamnaes ◽  
Chakravarthi Kanduri ◽  
...  

Autoantibodies to transglutaminase 2 (TG2) are hallmarks of celiac disease. To address B cell tolerance and autoantibody formation to TG2, we generated immunoglobulin knock-in (Ig KI) mice that express a prototypical celiac patient–derived anti-TG2 B cell receptor equally reactive to human and mouse TG2. We studied B cell development in the presence/absence of autoantigen by crossing the Ig KI mice to Tgm2−/− mice. Autoreactive B cells in Tgm2+/+ mice were indistinguishable from their naive counterparts in Tgm2−/− mice with no signs of clonal deletion, receptor editing, or B cell anergy. The autoreactive B cells appeared ignorant to their antigen, and they produced autoantibodies when provided T cell help. The findings lend credence to a model of celiac disease where gluten-reactive T cells provide help to autoreactive TG2-specific B cells by involvement of gluten–TG2 complexes, and they outline a general mechanism of autoimmunity with autoantibodies being produced by ignorant B cells on provision of T cell help.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 693-693
Author(s):  
Krystalyn E Hudson ◽  
Jeanne Hendrickson ◽  
Chantel M Cadwell ◽  
Neal N Iwakoshi ◽  
James C. Zimring

Abstract Abstract 693 Introduction: Breakdown of humoral tolerance to red blood cell (RBC) antigens can result in autoimmune hemolytic anemia (AIHA), a severe and potentially fatal disease. The pathogenesis of AIHA is poorly understood. To investigate the baseline biology of tolerance to self-antigens expressed on RBCs, we utilized a murine transgenic mouse with RBC-specific expression of a model antigen consisting of a triple fusion protein of hen egg lysozyme (HEL), ovalbumin (Ova), and human blood group molecule Duffy; HEL-OVA-Duffy (HOD mouse). Methods: Wild-type C57BL/6 (B6) mice or HOD mice (on a B6 background) were immunized with HEL/CFA or OVA/CFA to test immune responses to antigens contained within HOD. Some animals were immunized with peptides as opposed to whole protein. Anti-HOD antibodies were quantified by indirect immunofluorescence using HOD RBCs as targets. Anti-HEL IgG was quantified by ELISA and anti-HEL secreting B cells were enumerated by ELISPOT. CD4+ T cell responses were assessed by tetramer staining and tetramer pull-down assays using I-Ab-OVA-329-337/326-334. T cell tolerance was specifically broken by adoptive transfer of OT-II CD4+ T cells into HOD mice (OT-II T cells recognize OVA323-339 presented by I-Ab). Effects of HOD antigen expression on B cell development were evaluated by crossing the HOD mouse with an anti-HEL BCR knockin mouse (SwHEL mouse) that is capable of normal class switching. Results: Immunization of B6 mice with OVA/CFA induced high titer antibodies reactive with HOD RBCs; in contrast, no anti-HOD was detected in HOD mice immunized with OVA/CFA. Similarly, no anti-HEL was detected in HOD mice immunized with HEL/CFA, whereas wild-type B6 mice had high anti-HEL titers (p<0.05). These data demonstrate overall humoral tolerance to the HOD antigen. Using pull-down assays, OVA-tetramer reactive T cells were detected in both B6 and HOD mice, with similar endogenous frequencies (mean numbers are 40 and 53 T cells, respectively; at least 6 mice analyzed), suggesting that central tolerance did not eliminate HOD reactive T cells. However, upon immunization with OVA peptide, B6 but not HOD mice had a detectable expansion of OVA-tetramer reactive CD4+ T cells, indicating that peripheral tolerance was preventing HOD autoreactive CD4+ T cells from participating in an immune response. To assess B cell tolerance to the HOD antigen, T cell tolerance was circumvented through adoptive transfer or OTII splenocytes (specific for the OVA323-339 peptide) into HOD mice. Anti-HEL autoantibodies were detected in HOD mice but not control B6 mice (p<0.001). Antibody production correlated with a 10–20 fold increase of anti-HEL antibody secreting cells, as determined by ELISPOT. Autoantibody production in HOD mice was not due to passenger B cells from the OTII donor, an artifact of excess CD4+ T cell number, or bystander activation as no autoantibodies were observed upon adoptive transfer with OTIIs on a Rag knockout background, irrelevant CD4+ T cells from SMARTA mice, or activated CD4+ T cells from TCR75 mice. To test the effects of HOD antigen expression on development of autoreactive B cells, HOD mice were crossed with SwHEL BCR transgenic mice (that express anti-HEL) and the F1 mice were analyzed. HEL-reactive B cells were visualized using multimeric HEL conjugated to allophycocyanin. In HOD-SwHEL+ mice, approximately 46±14% of immature bone marrow B cells were reactive with HEL, compared to 15±12% in HOD+SwHEL+ mice (p=0.043, 3 independent experiments, 5 mice total). Conclusions: These data demonstrate that tolerance to an RBC specific antigen is complete in the CD4+ T cell, but not the B cell compartment. CD4+ T cell tolerance appears to be more an effect of peripheral tolerance than central deletion, as OVA-tetramer reactive CD4+ T cells were visible in HOD mice but did not activate upon immunization with their cognate antigen. In contrast, while the HODxSwHEL F1 mice demonstrate that some B cell tolerance to HOD occurs, the induction of autoantibodies by introducing CD4+ autoreactive T cells (OT-II) demonstrates that B cell tolerance to the HOD antigen is incomplete in HOD mice. Together, these data suggest that a breakdown in T cell tolerance is all that is required for the pathogenesis of AIHA. As the T cell tolerance appears not to be deletional, it is predicted that environmental factors leading to a breakdown in peripheral tolerance of CD4+ T cells would be sufficient to induce AIHA. Disclosures: Zimring: Immucor Inc,: Research Funding.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 39.2-39
Author(s):  
C. Dong ◽  
X. Gu ◽  
J. Ji ◽  
X. Zhang ◽  
Z. Gu

Background:Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that occurs when the body’s immune system attacks own tissues and organs. B cells play a central role in SLE pathogenesis by producing autoantibodies as well as antibody-independent functions. Peripheral B cell abnormality is well known in lupus patients such as expansions of plasmablasts and atypical memory B cells, which are associated with active diseases. However, little is known about the B cell development in the bone marrow of lupus patients.Objectives:We conduct this survey to explore the disorder of the B cell development in the bone marrow of lupus patients.Methods:In this study, we have performed the scRNASeq to profile the bone marrow B cell compartment in lupus patients and healthy donors.Results:We identified that in a subset of lupus patients, the early B cells (proB and preB cells) were strongly decreased, which were confirmed by flow cytometry in an expanded cohort. Furthermore, bone marrow B cells from these patients showed a strong proinflammatory signature revealed by pathway analysis. Interestingly, BCR repertoire analysis showed that the IGHV-4-34 was highly enriched in these patients, indicating an enhanced B cell tolerance defect. Finally, a panel of proinflammatory cytokines (TNF-a, IL-1a, IL-12p70, IFN-g, et al.) were strongly increased in the bone marrow plasma of these patients compared with early B normal patients and healthy donors, confirming a localized proinflammatory microenvironment.Conclusion:Altogether, the current study has revealed that a defective early B cell development in lupus patients is associated with a more severe B cell tolerance defect and aggravated inflammation, which may shed new light on developing novel therapies by targeting relevant pathways.References:[1]Min Wang, Hua Chen, Jia Qiu, et al. Antagonizing miR-7 suppresses B cell hyperresponsiveness and inhibits lupus development. J Autoimmun 2020.[2]A M Jacobi, D M Goldenberg, F Hiepe, et al. Differential effects of epratuzumab on peripheral blood B cells of patients with systemic lupus erythematosus versus normal controls. Ann Rheum Dis, 2008.Acknowledgements:This work was funded by Special project of clinical medicine of Nantong University (Grant/Award number: 2019LQ001), National Natural Science Foundation of China (Grant/Award number: 81671616, 81871278 and 82071838).Disclosure of Interests:None declared


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 391 ◽  
Author(s):  
Takeshi Tsubata

Self-reactive B cells are tolerized at various stages of B-cell development and differentiation, including the immature B-cell stage (central tolerance) and the germinal center (GC) B-cell stage, and B-cell tolerance involves various mechanisms such as deletion, anergy, and receptor editing. Self-reactive B cells generated by random immunoglobulin variable gene rearrangements are tolerized by central tolerance and anergy in the periphery, and these processes involve apoptosis regulated by Bim, a pro-apoptotic member of the Bcl-2 family, and regulation of B-cell signaling by various phosphatases, including SHIP-1 and SHP-1. Self-reactive B cells generated by somatic mutations during GC reaction are also eliminated. Fas is not directly involved in this process but prevents persistence of GC reaction that allows generation of less stringently regulated B cells, including self-reactive B cells. Defects in self-tolerance preferentially cause lupus-like disease with production of anti-nuclear antibodies, probably due to the presence of a large potential B-cell repertoire reactive to nucleic acids and the presence of nucleic acid-induced activation mechanisms in various immune cells, including B cells and dendritic cells. A feed-forward loop composed of anti-nuclear antibodies produced by B cells and type 1 interferons secreted from nucleic acid-activated dendritic cells plays a crucial role in the development of systemic lupus erythematosus.


Sign in / Sign up

Export Citation Format

Share Document