scholarly journals Kinetic effects of quaternary lidocaine block of cardiac sodium channels: a gating current study.

1994 ◽  
Vol 103 (1) ◽  
pp. 19-43 ◽  
Author(s):  
D A Hanck ◽  
J C Makielski ◽  
M F Sheets

The interaction of antiarrhythmic drugs with ion channels is often described within the context of the modulated receptor hypothesis, which explains the action of drugs by proposing that the binding site has a variable affinity for drugs, depending upon whether the channel is closed, open, or inactivated. Lack of direct evidence for altered gating of cardiac Na channels allowed for the suggestion of an alternative model for drug interaction with cardiac channels, which postulated a fixed affinity receptor with access limited by the conformation of the channel (guarded receptor hypothesis). We report measurement of the gating currents of Na channels in canine cardiac Purkinje cells in the absence and presence of QX-222, a quaternary derivative of lidocaine, applied intracellularly, and benzocaine, a neutral local anesthetic. These data demonstrate that the cardiac Na channel behaves as a modulated rather than a guarded receptor in that drug-bound channels gate with altered kinetics. In addition, the results suggest a new interpretation of the modulated receptor hypothesis whereby drug occupancy reduces the overall voltage-dependence of gating, preventing full movement of the voltage sensor.

1995 ◽  
Vol 106 (4) ◽  
pp. 617-640 ◽  
Author(s):  
M F Sheets ◽  
D A Hanck

The gating charge and voltage dependence of the open state to the inactivated state (O-->I) transition was measured for the voltage-dependent mammalian cardiac Na channel. Using the site 3 toxin, Anthopleurin-A (Ap-A), which selectively modifies the O-->I transition (see Hanck, D. A., and M. F. Sheets. 1995. Journal of General Physiology. 106:601-616), we studied Na channel gating currents (Ig) in voltage-clamped single canine cardiac Purkinje cells at approximately 12 degrees C. Comparison of Ig recorded in response to step depolarizations before and after modification by Ap-A toxin showed that toxin-modified gating currents decayed faster and had decreased initial amplitudes. The predominate change in the charge-voltage (Q-V) relationship was a reduction in gating charge at positive potentials such that Qmax was reduced by 33%, and the difference between charge measured in Ap-A toxin and in control represented the gating charge associated with Na channels undergoing inactivation by O-->I. By comparing the time course of channel activation (represented by the gating charge measured in Ap-A toxin) and gating charge associated with the O-->I transition (difference between control and Ap-A charge), the influence of activation on the time course of inactivation could be accounted for and the inherent voltage dependence of the O-->I transition determined. The O-->I transition for cardiac Na channels had a valence of 0.75 e-. The total charge of the cardiac voltage-gated Na channel was estimated to be 5 e-. Because charge is concentrated near the opening transition for this isoform of the channel, the time constant of the O-->I transition at 0 mV could also be estimated (0.53 ms, approximately 12 degrees C). Prediction of the mean channel open time-voltage relationship based upon the magnitude and valence of the O-->C and O-->I rate constants from INa and Ig data matched data previously reported from single Na channel studies in heart at the same temperature.


1990 ◽  
Vol 95 (3) ◽  
pp. 439-457 ◽  
Author(s):  
D A Hanck ◽  
M F Sheets ◽  
H A Fozzard

Gating currents (Ig) were recorded in single canine cardiac Purkinje cells at 10-12 degrees C. Ig characteristics corresponded closely to macroscopic INa characteristics and appeared to exhibit little contamination from other voltage-gated channels. Charge density predicted by peak INa was 0.14-0.22 fC micron -2 and this compared well with the measured value of 0.19 +/- 0.10 fC micron -2 (SD; n = 28). The charge-voltage relationship rose over a voltage similar to the peak INa conductance curve. The midpoints of the two relationships were not significantly different although the conductance curve was 1.5 +/- 0.3 (SD; n = 9) times steeper. Consistent with this observation, which predicted that a large amount of the gating charge would be associated with transitions close to the open state, an analysis of activation from Hodgkin-Huxley fits to the macroscopic currents showed that tau m corresponded well with a prominent component of Ig. Ig relaxations fitted two exponentials better than one over the range of voltages in which Na channels were activated. When the holding potential was hyperpolarized, relaxation of Ig during step depolarizations to 0 mV was prolonged but there was no substantial increase in charge, further suggesting that early closed-state transitions are less in charge, further suggesting that early closed-state transitions are less voltage dependent. The single cardiac Purkinje cell appears to be a good candidate for combining Ig and single-channel measurements to obtain a kinetic description of the cardiac Na channel.


1989 ◽  
Vol 257 (1) ◽  
pp. H79-H84 ◽  
Author(s):  
L. A. Alpert ◽  
H. A. Fozzard ◽  
D. A. Hanck ◽  
J. C. Makielski

Lidocaine and its permanently charged analogue QX-314 block sodium current (INa) in nerve, and by this mechanism, lidocaine produces local anesthesia. When administered clinically, lidocaine prevents cardiac arrhythmias. Nerve and skeletal muscle are much more sensitive to local anesthetics when the drugs are applied inside the cell, indicating that the binding site for local anesthetics is located on the inside of those Na channels. Using a large suction pipette for voltage clamp and internal perfusion of single cardiac Purkinje cells, we demonstrate that a charged lidocaine analogue blocks INa not only when applied from the inside but also from the outside, unlike noncardiac tissue. This functional difference in heart predicts that a second local anesthetic binding site exists outside or near the outside of cardiac Na channels and emphasizes that the cardiac Na channel is different from that in nerve.


1993 ◽  
Vol 101 (5) ◽  
pp. 651-671 ◽  
Author(s):  
S C Dudley ◽  
C M Baumgarten

In TTX-sensitive nerve and skeletal muscle Na+ channels, selective modification of external carboxyl groups with trimethyloxonium (TMO) or water-soluble carbodiimide (WSC) prevents voltage-dependent Ca2+ block, reduces unitary conductance, and decreases guanidinium toxin affinity. In the case of TMO, it has been suggested that all three effects result from modification of a single carboxyl group, which causes a positive shift in the channel's surface potential. We studied the effect of these reagents on Ca2+ block of adult rabbit ventricular Na+ channels in cell-attached patches. In unmodified channels, unitary conductance (gamma Na) was 18.6 +/- 0.9 pS with 280 mM Na+ and 2 mM Ca2+ in the pipette and was reduced to 5.2 +/- 0.8 pS by 10 mM Ca2+. In contrast to TTX-sensitive Na+ channels, Ca2+ block of cardiac Na+ channels was not prevented by TMO; after TMO pretreatment, gamma Na was 6.1 +/- 1.0 pS in 10 mM Ca2+. Nevertheless, TMO altered cardiac Na+ channel properties. In 2 mM Ca2+, TMO-treated patches exhibited up to three discrete gamma Na levels: 15.3 +/- 1.7, 11.3 +/- 1.5, and 9.8 +/- 1.8 pS. Patch-to-patch variation in which levels were present and the absence of transitions between levels suggests that at least two sites were modified by TMO. An abbreviation of mean open time (MOT) accompanied each decrease in gamma Na. The effects on channel gating of elevating external Ca2+ differed from those of TMO pretreatment. Increasing pipette Ca2+ from 2 to 10 mM prolonged the MOT at potentials positive to approximately -35 mV by decreasing the open to inactivated (O-->I) transition rate constant. On the other hand, even in 10 mM Ca2+ TMO accelerated the O-->I transition rate constant without a change in its voltage dependence. Ensemble averages after TMO showed a shortening of the time to peak current and an acceleration of the rate of current decay. Channel modification with WSC resulted in analogous effects to those of TMO in failing to show relief from block by 10 mM Ca2+. Further, WSC caused a decrease in gamma Na and an abbreviation of MOT at all potentials tested. We conclude that a change in surface potential caused by a single carboxyl modification is inadequate to explain the effects of TMO and WSC in heart. Failure of TMO and WSC to prevent Ca2+ block of the cardiac Na+ channel is a new distinction among isoforms in the Na+ channel multigene family.


1996 ◽  
Vol 270 (5) ◽  
pp. C1522-C1531 ◽  
Author(s):  
D. Zeng ◽  
J. W. Kyle ◽  
R. L. Martin ◽  
K. S. Ambler ◽  
D. A. Hanck

RT4-B is one of several cell lines derived from a multipotent stem cell line, RT4-AC, which originated from a rat peripheral neurotumor. Based on Northern blot and ribonuclease protection experiments, RT4-B8 cells have been proposed to express rat cardiac Na channel mRNA as the major isoform. We report here direct electrophysiological evidence that the expressed voltage-gated Na channels in the RT4-B8 cell line are of the cardiac phenotype with no evidence for subpopulations expressing other Na channel isoforms. Current activation half point (conductance) was -41 +/- 5 mV (n = 7) and the steady-state voltage-dependent availability half point was -89 +/- 1 mV. As expected for cardiac Na channels, the half concentration of block for tetrodotoxin block was 0.74 microM, for saxitoxin (STX) was 0.15 microM, and for the class 2B divalent cation Cd2+ was 67 microM. Block was well described by single-site dose-response relationships with no indication of a subpopulation with "neuronal" affinity. Single-channel conductance (140 mM Na+) was 10 pS and predicted the average number of channels open at peak Na current to be 3 channels/microns2. [3H]STX binding data were also consistent with a single population of low-affinity STX binding sites and predicted channel density to be 11 sites/microns2. No inwardly or outwardly rectifying K or Ca currents were detected electrophysiologically, although in some cells a small time-independent Cl current was detected. Reverse transcription-polymerase chain reaction of mRNA isolated from RT4-B8 cells demonstrated the presence of rat cardiac (rH1) and brain IIa alpha-subunit mRNA, as well as mRNA for the Na channel beta 1-subunit. Northern blot analysis confirmed the predominance of the rat cardiac Na mRNA compared with brain IIa. The beta 1-subunit mRNA levels were significantly lower than those detected in rat brain and heart mRNA but were comparable to the low level of beta 1-subunit mRNA detected in isolated rat ventricular myocytes.


1995 ◽  
Vol 106 (6) ◽  
pp. 1193-1209 ◽  
Author(s):  
H B Nuss ◽  
G F Tomaselli ◽  
E Marbán

When lidocaine is given systemically, cardiac Na channels are blocked preferentially over those in skeletal muscle and nerve. This apparent increased affinity is commonly assumed to arise solely from the fact that cardiac Na channels spend a large fraction of their time in the inactivated state, which exhibits a high affinity for local anesthetics. The oocyte expression system was used to compare systematically the sensitivities of skeletal (mu 1-beta 1) and cardiac (hH1-beta 1) Na channels to block by lidocaine, under conditions in which the only difference was the choice of alpha subunit. To check for differences in tonic block, Na currents were elicited after 3 min of exposure to various lidocaine concentrations at -100 mV, a potential at which both hH1-beta 1 and mu 1-beta 1 channels were fully reprimed. Surprisingly, hH1-beta 1 Na channels were threefold more sensitive to rested-state block by lidocaine (402 +/- 36 microM, n = 4-22) than were mu 1-beta 1 Na channels (1,168 +/- 34 microM, n = 7-19). In contrast, the inactivated state binding affinities determined at partially depolarized holding potentials (h infinity approximately 0.2) were similar (Kd = 16 +/- 1 microM, n = 3-9 for hH1-beta 1 and 12 +/- 2 microM, n = 4-11 for mu 1-beta 1). Lidocaine produced more use-dependent block of peak hH1-beta 1 Na current elicited by trains of short-(10 ms) or long- (1 s) duration step depolarizations (0.5 Hz, -20 mV) than of mu 1-beta 1 Na current. During exposure to lidocaine, hH1-beta 1 channels recover from inactivation at -100 mV after a prolonged delay (20 ms), while mu 1-beta 1 channels begin repriming immediately. The overall time course of recovery from inactivation in the presence of lidocaine is much slower in hH1-beta 1 than in mu 1-beta 1 channels. These unexpected findings suggest that structural differences in the alpha subunits impart intrinsically different lidocaine sensitivities to the two isoforms. The differences in steady state affinities and in repriming kinetics are both in the correct direction to help explain the increased potency of cardiac Na channel block by local anesthetics.


1996 ◽  
Vol 271 (3) ◽  
pp. C1001-C1006 ◽  
Author(s):  
M. F. Sheets ◽  
J. W. Kyle ◽  
S. Krueger ◽  
D. A. Hanck

We describe a new mammalian expression system that optimizes conditions for the measurement of Na channel gating currents (Ig). The small magnitude of Ig limits their study to preparations with high numbers of Na channels to improve signal-to-noise ratios. To increase Na channel Ig signals, single tsA201 cells (approximately 20 microns in diameter) were fused into large, multinucleated cells by treatment with polyethylene glycol. After being placed in cell culture for 48-72 h, fused tsA201 cells develop a spherical geometry with diameters up to 200 microns. Because of the large plasma membrane surface area, fused tsA201 cells are able to express high levels of Na channels after transient transfection with Na channel cDNAs using Lipofectamine. Typically, 5 days after transfection, fused tsA201 cells that are 60-100 microns in diameter are selected for voltage clamp with a large suction pipette (a pore size of 20-30 microns) that allows for both a low series resistance and internal perfusion. Approximately two-thirds of transfected fused tsA201 cells express Na current, with nearly one-third of transfected cells expressing sufficient numbers of Na channels to allow for the ready measurement of Ig. In addition to fused tsA201 cells being a preparation well suited for the study of Ig, they should also be useful for measurement of electrical signals from other voltage-gated channels and transporters that generate small electrical signals.


1995 ◽  
Vol 106 (4) ◽  
pp. 601-616 ◽  
Author(s):  
D A Hanck ◽  
M F Sheets

The site 3 toxin, Anthopleurin-A (Ap-A), was used to modify inactivation of sodium channels in voltage-clamped single canine cardiac Purkinje cells at approximately 12 degrees C. Although Ap-A toxin markedly prolonged decay of sodium current (INa) in response to step depolarizations, there was only a minor hyperpolarizing shift by 2.5 +/- 1.7 mV (n = 13) of the half-point of the peak conductance-voltage relationship with a slight steepening of the relationship from -8.2 +/- 0.8 mV to -7.2 +/- 0.8 mV (n = 13). Increases in Gmax were dependent on the choice of cation used as a Na substitute intracellularly and ranged between 26 +/- 15% (Cs, n = 5) to 77 +/- 19% (TMA, n = 8). Associated with Ap-A toxin modification time to peak INa occurred later, but analysis of the time course INa at multiple potentials showed that the largest effects were on inactivation with only a small effect on activation. Consistent with little change in Na channel activation by Ap-A toxin, INa tail current relaxations at very negative potentials, where the dominant process of current relaxation is deactivation, were similar in control and after toxin modification. The time course of the development of inactivation after Ap-A toxin modification was dramatically prolonged at positive potentials where Na channels open. However, it was not prolonged after Ap-A toxin at negative potentials, where channels predominately inactivate directly from closed states. Steady state voltage-dependent availability (h infinity or steady state inactivation), which predominately reflects the voltage dependence of closed-closed transitions equilibrating with closed-inactivated transitions was shifted in the depolarizing direction by only 1.9 +/- 0.8 mV (n = 8) after toxin modification. The slope factor changed from 7.2 +/- 0.8 to 9.9 +/- 0.9 mV (n = 8), consistent with a prolongation of inactivation from the open state of Ap-A toxin modified channels at more depolarized potentials. We conclude that Ap-A selectively modifies Na channel inactivation from the open state with little effect on channel activation or on inactivation from closed state(s).


Physiology ◽  
1989 ◽  
Vol 4 (3) ◽  
pp. 88-90
Author(s):  
J Tamargo ◽  
C Valenzuela ◽  
E Delpon

The modulated receptor hypothesis is useful in understanding the kinetics of Na+ channels and the changes produced by various antiarrhythmic drugs.


1996 ◽  
Vol 270 (4) ◽  
pp. C998-C1010 ◽  
Author(s):  
M. L. Chalfant ◽  
T. G. O'Brien ◽  
M. M. Civan

Amiloride-sensitive whole cell currents have been reported in M-1 mouse cortical collecting duct cells (Korbmacher et al., J. Gen. Physiol. 102: 761-793, 1993). We have confirmed that amiloride inhibits the whole cell currents but not necessarily the measured whole cell currents. Anomalous responses were eliminated by removing external Na+ and/or introducing paraepithelial shunts. The amiloride-sensitive whole cell currents displayed Goldman rectification. The ionic selectivity sequence of the amiloride-sensitive conductance was Li+ > Na+ >> K+. Growth of M-1 cells on permeable supports increased the amiloride-sensitive whole cell permeability, compared with cells grown on plastic. Single amiloride-sensitive channels were observed, which conformed to the highly selective low-conductance amiloride-sensitive class [Na(5)] of epithelial Na+ channels. Hypotonic pretreatment markedly slowed run-down of channel activity. The gating of the M-1 Na+ channel in excised patches was complex. Open- and closed-state dwell-time distributions from patches that display one operative channel were best described with two or more exponential terms each. We conclude that 1) study of M-1 whole cell Na+ currents is facilitated by reducing the transepithelial potential to zero, 2) these M-1 currents reflect the operation of Na(5) channels, and 3) the Na+ channels display complex kinetics, involving > or = 2 open and > or = 2 closed states.


Sign in / Sign up

Export Citation Format

Share Document