scholarly journals The olfactory system of migratory adult sea lamprey (Petromyzon marinus) is specifically and acutely sensitive to unique bile acids released by conspecific larvae.

1995 ◽  
Vol 105 (5) ◽  
pp. 569-587 ◽  
Author(s):  
W Li ◽  
P W Sorensen ◽  
D D Gallaher

Larval sea lamprey inhabit freshwater streams and migrate to oceans or lakes to feed after a radical metamorphosis; subsequently, mature adults return to streams to spawn. Previous observations suggested that lamprey utilize the odor of conspecific larvae to select streams for spawning. Here we report biochemical and electrophysiological evidence that this odor is comprised of two unique bile acids released by larvae. High performance liquid chromatography and mass spectrometry demonstrated that larval sea lamprey produce and release two unique bile acids, allocholic acid (ACA) and petromyzonol sulfate (PS). Electro-olfactogram (EOG) recording also demonstrated that the olfactory system of migratory adult sea lamprey is acutely and specifically sensitive to ACA and PS; detection thresholds for these compounds were approximately 10(-12) M. ACA and PS were the most potent of 38 bile acids tested and cross-adaptation experiments suggested that adult sea lamprey have specific olfactory receptor sites associated with independent signal transduction pathways for these bile acids. These receptor sites specifically recognize the key substituents of ACA and PS such as a 5 alpha-hydrogen, three axial hydroxyls, and a C-24 sulfate ester or carboxyl. In conclusion, the unique lamprey bile acids, ACA and PS, are potent and specific stimulants of the adult olfactory system, strongly supporting the hypothesis that these unique bile acids function as migratory pheromones in lamprey.

2000 ◽  
Vol 57 (3) ◽  
pp. 557-569 ◽  
Author(s):  
Rickard Bjerselius ◽  
Weiming Li ◽  
John H Teeter ◽  
James G Seelye ◽  
Peter B Johnsen ◽  
...  

Four behavioral experiments conducted in both the laboratory and the field provide evidence that adult sea lamprey (Petromyzon marinus) select spawning rivers based on the odor of larvae that they contain and that bile acids released by the larvae are part of this pheromonal odor. First, when tested in a recirculating maze, migratory adult lamprey spent more time in water scented with larvae. However, when fully mature, adults lost their responsiveness to larvae and preferred instead the odor of mature individuals. Second, when tested in a flowing stream, migratory adults swam upstream more actively when the water was scented with larvae. Third, when migratory adults were tested in a laboratory maze containing still water, they exhibited enhanced swimming activity in the presence of a 0.1 nM concentration of the two unique bile acids released by larvae and detected by adult lamprey. Fourth, when adults were exposed to this bile acid mixture within flowing waters, they actively swam into it. Taken together, these data suggest that adult lamprey use a bile acid based larval pheromone to help them locate spawning rivers and that responsiveness to this cue is influenced by current flow, maturity, and time of day. Although the precise identity and function of the larval pheromone remain to be fully elucidated, we believe that this cue will ultimately prove useful as an attractant in sea lamprey control.


2015 ◽  
Vol 13 (1) ◽  
pp. 237-244 ◽  
Author(s):  
Percília Cardoso Giaquinto ◽  
Rodrigo Egydio Barreto ◽  
Gilson Luiz Volpato ◽  
Marisa Fernandes-de-Castilho ◽  
Eliane Gonçalves-de-Freitas

Bile acids are potent olfactory and gustatory stimulants for fish. Electro-olfactogram recording was used to test whether the olfactory epithelium of pintado catfish Pseudoplatystoma corruscans is specifically sensitive to bile acids, some of which have been hypothesized to function as pheromones. Five out of 30 bile acids that had been pre-screened for olfactory activity in fish were selected. Cross-adaptation experiments demonstrated that sensitivity to bile acids is attributable to at least 3 independent classes of olfactory receptor sites. The taurocholic acid (TCA) and taurochenodeoxycholic acid (TCD) were the most potent compounds. By using avoidance/preference tests, we found that P. corruscans prefers water containing TCA. Bile acids are discriminated by olfactory epithelium of pintado, supporting that these compounds could function as pheromones.


2001 ◽  
Vol 58 (12) ◽  
pp. 2374-2385 ◽  
Author(s):  
Lance A Vrieze ◽  
Peter W Sorensen

This study used large laboratory mazes and natural stream waters to test the role of olfactory cues, including a pheromone released by larvae, in spawning stream localization by migratory sea lamprey (Petromyzon marinus). We found that migratory lamprey strongly prefer stream water over lake water and that this response is dependent upon a functional olfactory system. Responses persisted among migratory lamprey even after stream water was diluted a thousand times but were not seen among non-migratory lamprey. Experiments using waters from five streams demonstrated that a larval pheromone is a key determinant of stream attractiveness: water from streams with larval populations were consistently more attractive than those without, and adding larval odor to the latter reversed this relationship. Larval odor was attractive at low, realistic concentrations, especially when presented together with natural stream water, suggesting that streams contain other odors that synergize the actions of the pheromone. Some, but not all, of the activity of the larval pheromone could be explained by two bile acids released by larvae (petromyzonol sulfate and allocholic acid). Together, these results strongly suggest that migratory lamprey locate streams using a larval pheromone. This cue could be useful in lamprey control.


1995 ◽  
Vol 268 (6) ◽  
pp. G1051-G1059
Author(s):  
E. R. Barbero ◽  
M. C. Herrera ◽  
M. J. Monte ◽  
M. A. Serrano ◽  
J. J. Marin

Effect of bile acids on DNA synthesis by the regenerating liver was investigated in mice in vivo after partial hepatectomy (PH). Radioactivity incorporation into DNA after [14C]thymidine intraperitoneal administration peaked at 48 h after PH. At this time a significant taurocholate-induced dose-dependent reduction in DNA synthesis without changes in total liver radioactivity content was found (half-maximal effect at approximately 0.1 mumol/g body wt). Effect of taurocholate (0.5 mumol/g body wt) was mimicked by chocolate, ursodeoxycholate, deoxycholate, dehydrocholate, tauroursodeoxycholate, taurochenodeoxycholate, and taurodeoxycholate. In contrast, chenodeoxycholate, glycocholate, glycochenodeoxycholate, glycoursodeoxycholate, glycodeoxycholate, 5 beta-cholestane, bromosulfophthalein, and free taurine lacked this effect. No relationship between hydrophobic-hydrophilic balance and inhibitory effect was observed. Analysis by high-performance liquid chromatography indicated that inhibition of thymidine incorporation into DNA was not accompanied by an accumulation of phosphorylated DNA precursors in the liver but rather by a parallel increase in nucleotide catabolism. Bile acid-induced modifications in DNA synthesis were observed in vivo even in the absence of changes in toxicity tests, which suggests that the inhibitory effect shared by most unconjugated and tauroconjugated bile acids but not by glycoconjugated bile acids should be accounted for by mechanisms other than nonselective liver cell injury.


2012 ◽  
Vol 75 (6) ◽  
pp. 1090-1098 ◽  
Author(s):  
XINLONG HE ◽  
YUNYUN ZOU ◽  
YOUNGJAE CHO ◽  
JUHEE AHN

This study was designed to evaluate the effects of bile acid deconjugation by probiotic strains on the antibiotic susceptibility of antibiotic-sensitive and multiple antibiotic–resistant Salmonella Typhimurium and Staphylococcus aureus. Eight probiotic strains, Bifidobacterium longum B6, Lactobacillus acidophilus ADH, Lactobacillus brevis KACC 10553, Lactobacillus casei KACC 12413, Lactobacillus paracasei ATCC 25598, Lactobacillus rhamnosus GG, Leuconostoc mesenteroides KACC 12312, and Pediococcus acidilactici KACC 12307, were used to examine bile acid tolerance. The ability to deconjugate bile acids was evaluated using both thin-layer chromatography and high-performance liquid chromatography. The antibiotic susceptibility testing was carried out to determine the synergistic inhibitory activity of deconjugated bile acids. L. acidophilus, L. brevis, and P. acidilactici showed the most tolerance to the conjugated bile acids. P. acidilactici deconjugated glycocholic acid and glycodeoxycholate from 3.18 and 3.09 mM to the detection limits, respectively. The antibiotic susceptibility of selected foodborne pathogens was increased by increasing the concentration of deconjugated bile acids. The study results are useful for understanding the relationship between bile acid deconjugation by probiotic strains and antibiotic susceptibility in the presence of deconjugated bile acids, and they may be useful for designing new probiotic-antibiotic combination therapy based on bile acid deconjugation.


Author(s):  
Morimasa Hayashi ◽  
Yasuharu Imai ◽  
Yuzo Minami ◽  
Sumio Kawata ◽  
Yuji Matsuzawa ◽  
...  

2021 ◽  
pp. jeb.229476
Author(s):  
Yu-Wen Chung-Davidson ◽  
Ugo Bussy ◽  
Skye D. Fissette ◽  
Anne M. Scott ◽  
Weiming Li

Pheromonal bile salts are important for sea lampreys (Petromyzon marinus Linnaeus) to complete their life cycle. The synthesis and release of a releaser/primer pheromone 3-keto petromyzonol sulfate (3kPZS) by spermiating males have been well characterized. 3kPZS evokes sexual behaviors in ovulatory females, induces immediate 3kPZS release in spermiating males, and elicits neuroendocrine responses in prespawning adults. Another primer pheromone released by spermiating males, 3-keto allocholic acid (3kACA), antagonizes the neuroendocrine effects of 3kPZS in prespermiating males. However, the effects of 3kACA and 3kPZS on pheromone production in prespawning adults is unclear. To understand the foundation of pheromone production, we examined sea lamprey bile salt levels at different life stages. To investigate the priming effects of 3kACA and 3kPZS, we exposed prespawning adults with vehicle or synthetic 3kACA or 3kPZS. We hypothesized that endogenous bile salt levels were life-stage and sex-dependent, and differentially affected by 3kACA and 3kPZS in prespawning adults. Using ultra-performance liquid chromatography tandem mass spectrometry, we found that sea lampreys contained distinct mixtures of bile salts in the liver and plasma at different life stages. Males usually contained higher amounts of bile salts than females. Petromyzonamine disulfate was the most abundant C27 bile salt and petromyzonol sulfate was the most abundant C24 bile salt. Waterborne 3kACA and 3kPZS exerted differential effects on bile salt production in the liver and gill, their circulation and clearance in the plasma, and their release into water. We conclude that bile salt levels are life-stage and sex-dependent and differentially affected by primer pheromones.


Sign in / Sign up

Export Citation Format

Share Document