scholarly journals Kcsa

2001 ◽  
Vol 118 (3) ◽  
pp. 303-314 ◽  
Author(s):  
Meredith LeMasurier ◽  
Lise Heginbotham ◽  
Christopher Miller

Ion conduction and selectivity properties of KcsA, a bacterial ion channel of known structure, were studied in a planar lipid bilayer system at the single-channel level. Selectivity sequences for permeant ions were determined by symmetrical solution conductance (K+ > Rb+, NH4+, Tl+ ≫ Cs+, Na+, Li+) and by reversal potentials under bi-ionic or mixed-ion conditions (Tl+ > K+ > Rb+ > NH4+ ≫ Na+, Li+). Determination of reversal potentials with submillivolt accuracy shows that K+ is over 150-fold more permeant than Na+. Variation of conductance with concentration under symmetrical salt conditions is complex, with at least two ion-binding processes revealing themselves: a high affinity process below 20 mM and a low affinity process over the range 100–1,000 mM. These properties are analogous to those seen in many eukaryotic K+ channels, and they establish KcsA as a faithful structural model for ion permeation in eukaryotic K+ channels.

1983 ◽  
Vol 81 (5) ◽  
pp. 687-703 ◽  
Author(s):  
H M Hoffmann ◽  
V E Dionne

The dependence of acetylcholine receptor mean single-channel conductance on temperature was studied at garter snake twitch-muscle endplates using fluctuation analysis. In normal saline under conditions where most of the endplate current was carried by Na+, the channel conductance increased continuously from near 0 degrees C to approximately 23 degrees C with a Q10 of 1.97 +/- 0.14 (mean +/- SD). When 50% of the bath Na+ was replaced by either Li+, Rb+, or Cs+, the Q10 did not change significantly; however, at any temperature the channel conductance was greatest in Cs-saline and decreased with the ion sequence Cs greater than Rb greater than Na greater than Li. The results were fit by an Eyring-type model consisting of one free-energy well on the extracellular side of a single energy barrier. Ion selectivity appeared to result from ion-specific differences in the well and not in the barrier of this model. With a constant barrier enthalpy for different ions, well free-energy depth was greatest for Cs+ and graded identical to the permeability sequence. The correlation between increased well depth (i.e., ion binding) and increased channel conductance can be accounted for by the Boltzmann distribution of thermal energy.


2004 ◽  
Vol 124 (4) ◽  
pp. 319-332 ◽  
Author(s):  
Tetsuya Kitaguchi ◽  
Manana Sukhareva ◽  
Kenton J. Swartz

The primary activation gate in K+ channels is thought to reside near the intracellular entrance to the ion conduction pore. In a previous study of the S6 activation gate in Shaker (Hackos et al., 2002), we found that mutation of V478 to W results in a channel that cannot conduct ions even though the voltage sensors are competent to translocate gating charge in response to membrane depolarization. In the present study we explore the mechanism underlying the nonconducting phenotype in V478W and compare it to that of W434F, a mutation located in an extracellular region of the pore that is nonconducting because the channel is predominantly found in an inactivated state. We began by examining whether the intracellular gate moves using probes that interact with the intracellular pore and by studying the inactivation properties of heterodimeric channels that are competent to conduct ions. The results of these experiments support distinct mechanisms underlying nonconduction in W434F and V478W, suggesting that the gate in V478W either remains closed, or that the mutation has created a large barrier to ion permeation in the open state. Single channel recordings for heterodimeric and double mutant constructs in which ion conduction is rescued suggest that the V478W mutation does not dramatically alter unitary conductance. Taken together, our results suggest that the V478W mutation causes a profound shift of the closed to open equilibrium toward the closed state. This mechanism is discussed in the context of the structure of this critical region in K+ channels.


1987 ◽  
Author(s):  
G L Brodsky ◽  
S P Bajaj

Prothrombin and factor X possess two high affinity and several low affinity lanthanide ion binding sites. In both proteins, the association constant of the high affinity sites is at least 50-fold greater than that of the low affinity sites. Moreover, metal bound to these high affinity sites is extremely difficult to displace. It has been proposed that one of the two high affinity sites in factor X involves Gla residues while the other involves β-hydroxyaspartic acid and no Gla residues. It is also known that ^H can be specifically incorporated into Gla residues at an acidic pH. We have determined that under nondenaturing conditions when Gla (synthetic or in proteins) is complexed to metal at pH 5.5, this specific 3H incorporation is blocked. Furthermore, we have found that β-hydroxyaspartic acid does not incorporate in the presence or absence of metal. When we incubated prothrombin or factor X (41 μM) with 3H2O in the presence of Tb3+ or Gd3+ (82 μM), we blocked 5.6 Gla residues per prothrombin and 5.5 Gla residues per factor X from 3H incorporation. Under these conditions, we calculated that >95% of the high affinity sites are occupied by metal. Thus, in prothrombin, an average of 2.8 Gla residues are involved in forming each high affinity site. If the Gla residues in factor X participate in forming only one of the two high affinity sites, then all 5.5 Gla residues blocked from incorporation must be involved in forming that site. However, this seems highly unlikely. We conclude that, as in prothrombin, both high affinity sites in factor X involve Gla residues (average 2.75/site). However, our data does not exclude the possibility of existence of a heterologous site containing both β-hydroxyaspartic acid and Gla residues.


2004 ◽  
Vol 69 (4) ◽  
pp. 885-896 ◽  
Author(s):  
Luisa Stella Dolci ◽  
Péter Huszthy ◽  
Erika Samu ◽  
Marco Montalti ◽  
Luca Prodi ◽  
...  

Enantiomerically pure dimethyl- and diisobutyl-substituted phenazino-18-crown-6 ligands bind metal and ammonium ions and also primary aralkylammonium perchlorates in acetonitrile with high affinity, causing pronounced changes in their luminescence properties. In addition, they show enantioselectivity towards chiral primary aralkylammonium perchlorates. The possibility to monitor the binding process by photoluminescence spectroscopy can gain ground for the design of very efficient enantioselective chemosensors for chiral species. The observed changes in the photophysical properties are also an important tool for understanding the interactions present in the adduct.


Author(s):  
G. Brent Dawe ◽  
Patricia M. G. E. Brown ◽  
Derek Bowie

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate-type glutamate receptors (AMPARs and KARs) are dynamic ion channel proteins that govern neuronal excitation and signal transduction in the mammalian brain. The four AMPAR and five KAR subunits can heteromerize with other subfamily members to create several combinations of tetrameric channels with unique physiological and pharmacological properties. While both receptor classes are noted for their rapid, millisecond-scale channel gating in response to agonist binding, the intricate structural rearrangements underlying their function have only recently been elucidated. This chapter begins with a review of AMPAR and KAR nomenclature, topology, and rules of assembly. Subsequently, receptor gating properties are outlined for both single-channel and synaptic contexts. The structural biology of AMPAR and KAR proteins is also discussed at length, with particular focus on the ligand-binding domain, where allosteric regulation and alternative splicing work together to dictate gating behavior. Toward the end of the chapter there is an overview of several classes of auxiliary subunits, notably transmembrane AMPAR regulatory proteins and Neto proteins, which enhance native AMPAR and KAR expression and channel gating, respectively. Whether bringing an ion channel novice up to speed with glutamate receptor theory and terminology or providing a refresher for more seasoned biophysicists, there is much to appreciate in this summation of work from the glutamate receptor field.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Avital Shushan ◽  
Mickey Kosloff

AbstractThe interactions of the antibiotic proteins colicins/pyocins with immunity proteins is a seminal model system for studying protein–protein interactions and specificity. Yet, a precise and quantitative determination of which structural elements and residues determine their binding affinity and specificity is still lacking. Here, we used comparative structure-based energy calculations to map residues that substantially contribute to interactions across native and engineered complexes of colicins/pyocins and immunity proteins. We show that the immunity protein α1–α2 motif is a unique structurally-dissimilar element that restricts interaction specificity towards all colicins/pyocins, in both engineered and native complexes. This motif combines with a diverse and extensive array of electrostatic/polar interactions that enable the exquisite specificity that characterizes these interactions while achieving ultra-high affinity. Surprisingly, the divergence of these contributing colicin residues is reciprocal to residue conservation in immunity proteins. The structurally-dissimilar immunity protein α1–α2 motif is recognized by divergent colicins similarly, while the conserved immunity protein α3 helix interacts with diverse colicin residues. Electrostatics thus plays a key role in setting interaction specificity across all colicins and immunity proteins. Our analysis and resulting residue-level maps illuminate the molecular basis for these protein–protein interactions, with implications for drug development and rational engineering of these interfaces.


2003 ◽  
Vol 122 (3) ◽  
pp. 295-306 ◽  
Author(s):  
Sonia Traverso ◽  
Laura Elia ◽  
Michael Pusch

Opening of CLC chloride channels is coupled to the translocation of the permeant anion. From the recent structure determination of bacterial CLC proteins in the closed and open configuration, a glutamate residue was hypothesized to form part of the Cl−-sensitive gate. The negatively charged side-chain of the glutamate was suggested to occlude the permeation pathway in the closed state, while opening of a single protopore of the double-pore channel would reflect mainly a movement of this side-chain toward the extracellular pore vestibule, with little rearrangement of the rest of the channel. Here we show that mutating this critical residue (Glu166) in the prototype Torpedo CLC-0 to alanine, serine, or lysine leads to constitutively open channels, whereas a mutation to aspartate strongly slowed down opening. Furthermore, we investigated the interaction of the small organic channel blocker p-chlorophenoxy-acetic acid (CPA) with the mutants E166A and E166S. Both mutants were strongly inhibited by CPA at negative voltages with a >200-fold larger affinity than for wild-type CLC-0 (apparent KD at −140 mV ∼4 μM). A three-state linear model with an open state, a low-affinity and a high-affinity CPA-bound state can quantitatively describe steady-state and kinetic properties of the CPA block. The parameters of the model and additional mutagenesis suggest that the high-affinity CPA-bound state is similar to the closed configuration of the protopore gate of wild-type CLC-0. In the E166A mutant the glutamate side chain that occludes the permeation pathway is absent. Thus, if gating consists only in movement of this side-chain the mutant E166A should not be able to assume a closed conformation. It may thus be that fast gating in CLC-0 is more complex than anticipated from the bacterial structures.


1998 ◽  
Vol 111 (2) ◽  
pp. 363-379 ◽  
Author(s):  
Izumi Sugihara

Effects of internal Sr2+ on the activity of large-conductance Ca2+-activated K+ channels were studied in inside-out membrane patches from goldfish saccular hair cells. Sr2+ was approximately one-fourth as potent as Ca2+ in activating these channels. Although the Hill coefficient for Sr2+ was smaller than that for Ca2+, maximum open-state probability, voltage dependence, steady state gating kinetics, and time courses of activation and deactivation of the channel were very similar under the presence of equipotent concentrations of Ca2+ and Sr2+. This suggests that voltage-dependent activation is partially independent of the ligand. Internal Sr2+ at higher concentrations (>100 μM) produced fast and slow blockade both concentration and voltage dependently. The reduction in single-channel amplitude (fast blockade) could be fitted with a modified Woodhull equation that incorporated the Hill coefficient. The dissociation constant at 0 mV, the Hill coefficient, and zd (a product of the charge of the blocking ion and the fraction of the voltage difference at the binding site from the inside) in this equation were 58–209 mM, 0.69–0.75, 0.45–0.51, respectively (n = 4). Long shut events (slow blockade) produced by Sr2+ lasted ∼10–200 ms and could be fitted with single-exponential curves (time constant, τl−s) in shut-time histograms. Durations of burst events, periods intercalated by long shut events, could also be fitted with single exponentials (time constant, τb). A significant decrease in τb and no large changes in τl−s were observed with increased Sr2+ concentration and voltage. These findings on slow blockade could be approximated by a model in which single Sr2+ ions bind to a blocking site within the channel pore beyond the energy barrier from the inside, as proposed for Ba2+ blockade. The dissociation constant at 0 mV and zd in the Woodhull equation for this model were 36–150 mM and 1–1.8, respectively (n = 3).


2006 ◽  
Vol 400 (3) ◽  
pp. 385-392 ◽  
Author(s):  
Erdeni Bai ◽  
Federico I. Rosell ◽  
Bao Lige ◽  
Marcia R. Mauk ◽  
Barbara Lelj-Garolla ◽  
...  

The functional properties of the recombinant C-terminal dimerization domain of the Pseudomonas aeruginosa Fur (ferric uptake regulator) protein expressed in and purified from Escherichia coli have been evaluated. Sedimentation velocity measurements demonstrate that this domain is dimeric, and the UV CD spectrum is consistent with a secondary structure similar to that observed for the corresponding region of the crystallographically characterized wild-type protein. The thermal stability of the domain as determined by CD spectroscopy decreases significantly as pH is increased and increases significantly as metal ions are added. Potentiometric titrations (pH 6.5) establish that the domain possesses a high-affinity and a low-affinity binding site for metal ions. The high-affinity (sensory) binding site demonstrates association constants (KA) of 10(±7)×106, 5.7(±3)×106, 2.0(±2)×106 and 2.0(±3)×104 M−1 for Ni2+, Zn2+, Co2+ and Mn2+ respectively, while the low-affinity (structural) site exhibits association constants of 1.3(±2)×106, 3.2(±2)×104, 1.76(±1)×105 and 1.5(±2)×103 M−1 respectively for the same metal ions (pH 6.5, 300 mM NaCl, 25 °C). The stability of metal ion binding to the sensory site follows the Irving–Williams order, while metal ion binding to the partial sensory site present in the domain does not. Fluorescence experiments indicate that the quenching resulting from binding of Co2+ is reversed by subsequent titration with Zn2+. We conclude that the domain is a reasonable model for many properties of the full-length protein and is amenable to some analyses that the limited solubility of the full-length protein prevents.


2006 ◽  
Vol 127 (2) ◽  
pp. 159-169 ◽  
Author(s):  
Jill Thompson ◽  
Ted Begenisich

The complexity of mammalian physiology requires a diverse array of ion channel proteins. This diversity extends even to a single family of channels. For example, the family of Ca2+-activated K channels contains three structural subfamilies characterized by small, intermediate, and large single channel conductances. Many cells and tissues, including neurons, vascular smooth muscle, endothelial cells, macrophages, and salivary glands express more than a single class of these channels, raising questions about their specific physiological roles. We demonstrate here a novel interaction between two types of Ca2+-activated K channels: maxi-K channels, encoded by the KCa1.1 gene, and IK1 channels (KCa3.1). In both native parotid acinar cells and in a heterologous expression system, activation of IK1 channels inhibits maxi-K activity. This interaction was independent of the mode of activation of the IK1 channels: direct application of Ca2+, muscarinic receptor stimulation, or by direct chemical activation of the IK1 channels. The IK1-induced inhibition of maxi-K activity occurred in small, cell-free membrane patches and was due to a reduction in the maxi-K channel open probability and not to a change in the single channel current level. These data suggest that IK1 channels inhibit maxi-K channel activity via a direct, membrane-delimited interaction between the channel proteins. A quantitative analysis indicates that each maxi-K channel may be surrounded by four IK1 channels and will be inhibited if any one of these IK1 channels opens. This novel, regulated inhibition of maxi-K channels by activation of IK1 adds to the complexity of the properties of these Ca2+-activated K channels and likely contributes to the diversity of their functional roles.


Sign in / Sign up

Export Citation Format

Share Document