scholarly journals An integrated catch-and-hold mechanism activates nicotinic acetylcholine receptors

2012 ◽  
Vol 140 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Snehal Jadey ◽  
Anthony Auerbach

In neuromuscular acetylcholine (ACh) receptor channels (AChRs), agonist molecules bind with a low affinity (LA) to two sites that can switch to high affinity (HA) and increase the probability of channel opening. We measured (by using single-channel kinetic analysis) the rate and equilibrium constants for LA binding and channel gating for several different agonists of adult-type mouse AChRs. Almost all of the variation in the equilibrium constants for LA binding was from differences in the association rate constants. These were consistently below the limit set by diffusion and were substantially different even though the agonists had similar sizes and the same charge. This suggests that binding to resting receptors is not by diffusion alone and, hence, that each binding site can undergo two conformational changes (“catch” and “hold”) that connect three different structures (apo-, LA-bound, and HA-bound). Analyses of ACh-binding protein structures suggest that this binding site, too, may adopt three discrete structures having different degrees of loop C displacement (“capping”). For the agonists we tested, the logarithms of the equilibrium constants for LA binding and LA↔HA gating were correlated. Although agonist binding and channel gating have long been considered to be separate processes in the activation of ligand-gated ion channels, this correlation implies that the catch-and-hold conformational changes are energetically linked and together comprise an integrated process having a common structural basis. We propose that loop C capping mainly reflects agonist binding, with its two stages corresponding to the formation of the LA and HA complexes. The catch-and-hold reaction coordinate is discussed in terms of preopening states and thermodynamic cycles of activation.

2008 ◽  
Vol 132 (2) ◽  
pp. 265-278 ◽  
Author(s):  
Won Yong Lee ◽  
Chris R. Free ◽  
Steven M. Sine

Nicotinic acetylcholine receptors (AChRs) mediate rapid excitatory synaptic transmission throughout the peripheral and central nervous systems. They transduce binding of nerve-released ACh into opening of an intrinsic channel, yet the structural basis underlying transduction is not fully understood. Previous studies revealed a principal transduction pathway in which αArg 209 of the pre-M1 domain and αGlu 45 of the β1–β2 loop functionally link the two regions, positioning αVal 46 of the β1–β2 loop in a cavity formed by αPro 272 through αSer 269 of the M2–M3 loop. Here we investigate contributions of residues within and proximal to this pathway using single-channel kinetic analysis, site-directed mutagenesis, and thermodynamic mutant cycle analysis. We find that in contributing to channel gating, αVal 46 and αVal 132 of the signature Cys loop couple energetically to αPro 272. Furthermore, these residues are optimized in both their size and hydrophobicity to mediate rapid and efficient channel gating, suggesting naturally occurring substitutions at these positions enable a diverse range of gating rate constants among the Cys-loop receptor superfamily. The overall results indicate that αPro 272 functionally couples to flanking Val residues extending from the β1–β2 and Cys loops within the ACh binding to channel opening transduction pathway.


2005 ◽  
Vol 125 (5) ◽  
pp. 465-481 ◽  
Author(s):  
Ya-Chin Yang ◽  
Chung-Chin Kuo

The Na+ channel is the primary target of anticonvulsants carbamazepine, phenytoin, and lamotrigine. These drugs modify Na+ channel gating as they have much higher binding affinity to the inactivated state than to the resting state of the channel. It has been proposed that these drugs bind to the Na+ channel pore with a common diphenyl structural motif. Diclofenac is a widely prescribed anti-inflammatory agent that has a similar diphenyl motif in its structure. In this study, we found that diclofenac modifies Na+ channel gating in a way similar to the foregoing anticonvulsants. The dissociation constants of diclofenac binding to the resting, activated, and inactivated Na+ channels are ∼880 μM, ∼88 μM, and ∼7 μM, respectively. The changing affinity well depicts the gradual shaping of a use-dependent receptor along the gating process. Most interestingly, diclofenac does not show the pore-blocking effect of carbamazepine on the Na+ channel when the external solution contains 150 mM Na+, but is turned into an effective Na+ channel pore blocker if the extracellular solution contains no Na+. In contrast, internal Na+ has only negligible effect on the functional consequences of diclofenac binding. Diclofenac thus acts as an “opportunistic” pore blocker modulated by external but not internal Na+, indicating that the diclofenac binding site is located at the junction of a widened part and an acutely narrowed part of the ion conduction pathway, and faces the extracellular rather than the intracellular solution. The diclofenac binding site thus is most likely located at the external pore mouth, and undergoes delicate conformational changes modulated by external Na+ along the gating process of the Na+ channel.


2016 ◽  
Vol 149 (1) ◽  
pp. 85-103 ◽  
Author(s):  
Shaweta Gupta ◽  
Srirupa Chakraborty ◽  
Ridhima Vij ◽  
Anthony Auerbach

Nicotinic acetylcholine receptors are allosteric proteins that generate membrane currents by isomerizing (“gating”) between resting and active conformations under the influence of neurotransmitters. Here, to explore the mechanisms that link the transmitter-binding sites (TBSs) with the distant gate, we use mutant cycle analyses to measure coupling between residue pairs, phi value analyses to sequence domain rearrangements, and current simulations to reproduce a microsecond shut component (“flip”) apparent in single-channel recordings. Significant interactions between amino acids separated by >15 Å are rare; an exception is between the αM2–M3 linkers and the TBSs that are ∼30 Å apart. Linker residues also make significant, local interactions within and between subunits. Phi value analyses indicate that without agonists, the linker is the first region in the protein to reach the gating transition state. Together, the phi pattern and flip component suggest that a complete, resting↔active allosteric transition involves passage through four brief intermediate states, with brief shut events arising from sojourns in all or a subset. We derive energy landscapes for gating with and without agonists, and propose a structure-based model in which resting→active starts with spontaneous rearrangements of the M2–M3 linkers and TBSs. These conformational changes stabilize a twisted extracellular domain to promote transmembrane helix tilting, gate dilation, and the formation of a “bubble” that collapses to initiate ion conduction. The energy landscapes suggest that twisting is the most energetically unfavorable step in the resting→active conformational change and that the rate-limiting step in the reverse process is bubble formation.


2016 ◽  
Vol 148 (1) ◽  
pp. 43-63 ◽  
Author(s):  
Nuriya Mukhtasimova ◽  
Corrie J.B. daCosta ◽  
Steven M. Sine

The acetylcholine receptor (AChR) from vertebrate skeletal muscle initiates voluntary movement, and its kinetics of activation are crucial for maintaining the safety margin for neuromuscular transmission. Furthermore, the kinetic mechanism of the muscle AChR serves as an archetype for understanding activation mechanisms of related receptors from the Cys-loop superfamily. Here we record currents through single muscle AChR channels with improved temporal resolution approaching half an order of magnitude over our previous best. A range of concentrations of full and partial agonists are used to elicit currents from human wild-type and gain-of-function mutant AChRs. For each agonist–receptor combination, rate constants are estimated from maximum likelihood analysis using a kinetic scheme comprised of agonist binding, priming, and channel gating steps. The kinetic scheme and rate constants are tested by stochastic simulation, followed by incorporation of the experimental step response, sampling rate, background noise, and filter bandwidth. Analyses of the simulated data confirm all rate constants except those for channel gating, which are overestimated because of the established effect of noise on the briefest dwell times. Estimates of the gating rate constants were obtained through iterative simulation followed by kinetic fitting. The results reveal that the agonist association rate constants are independent of agonist occupancy but depend on receptor state, whereas those for agonist dissociation depend on occupancy but not on state. The priming rate and equilibrium constants increase with successive agonist occupancy, and for a full agonist, the forward rate constant increases more than the equilibrium constant; for a partial agonist, the forward rate and equilibrium constants increase equally. The gating rate and equilibrium constants also increase with successive agonist occupancy, but unlike priming, the equilibrium constants increase more than the forward rate constants. As observed for a full and a partial agonist, the gain-of-function mutation affects the relationship between rate and equilibrium constants for priming but not for channel gating. Thus, resolving brief single channel currents distinguishes priming from gating steps and reveals how the corresponding rate and equilibrium constants depend on agonist occupancy.


2010 ◽  
Vol 136 (3) ◽  
pp. 311-323 ◽  
Author(s):  
Antonella Gradogna ◽  
Elena Babini ◽  
Alessandra Picollo ◽  
Michael Pusch

The two human CLC Cl− channels, ClC-Ka and ClC-Kb, are almost exclusively expressed in kidney and inner ear epithelia. Mutations in the genes coding for ClC-Kb and barttin, an essential CLC-K channel β subunit, lead to Bartter syndrome. We performed a biophysical analysis of the modulatory effect of extracellular Ca2+ and H+ on ClC-Ka and ClC-Kb in Xenopus oocytes. Currents increased with increasing [Ca2+]ext without full saturation up to 50 mM. However, in the absence of Ca2+, ClC-Ka currents were still 20% of currents in 10 mM [Ca2+]ext, demonstrating that Ca2+ is not strictly essential for opening. Vice versa, ClC-Ka and ClC-Kb were blocked by increasing [H+]ext with a practically complete block at pH 6. Ca2+ and H+ act as gating modifiers without changing the single-channel conductance. Dose–response analysis suggested that two protons are necessary to induce block with an apparent pK of ∼7.1. A simple four-state allosteric model described the modulation by Ca2+ assuming a 13-fold higher Ca2+ affinity of the open state compared with the closed state. The quantitative analysis suggested separate binding sites for Ca2+ and H+. A mutagenic screen of a large number of extracellularly accessible amino acids identified a pair of acidic residues (E261 and D278 on the loop connecting helices I and J), which are close to each other but positioned on different subunits of the channel, as a likely candidate for forming an intersubunit Ca2+-binding site. Single mutants E261Q and D278N greatly diminished and the double mutant E261Q/D278N completely abolished modulation by Ca2+. Several mutations of a histidine residue (H497) that is homologous to a histidine that is responsible for H+ block in ClC-2 did not yield functional channels. However, the triple mutant E261Q/D278N/H497M completely eliminated H+ -induced current block. We have thus identified a protein region that is involved in binding these physiologically important ligands and that is likely undergoing conformational changes underlying the complex gating of CLC-K channels.


2019 ◽  
Author(s):  
Arvind Kumar ◽  
Sandip Basak ◽  
Shanlin Rao ◽  
Yvonne Gicheru ◽  
Megan L. Mayer ◽  
...  

AbstractGlycinergic synapses play a central role in motor control and pain processing in the central nervous system. Glycine receptors (GlyR) are key players in mediating fast inhibitory neurotransmission at these synapses. While previous high-resolution structural studies have provided insights into the molecular architecture of GlyR, several mechanistic questions pertaining to channel function are still unknown. Here, we present Cryo-EM structures of the full-length GlyR protein reconstituted into lipid nanodiscs that are captured in the unliganded (closed) and glycine-bound (open and desensitized) conformations. A comparison of the three states reveals global conformational changes underlying GlyR channel gating. The functional state assignments were validated by molecular dynamics simulations of the structures incorporated in a lipid bilayer. Observed permeation events are in agreement with the anion selectivity of the channel and the reported single-channel conductance of GlyR. These studies establish the structural basis for gating, selectivity, and single-channel conductance of GlyR in a physiological environment.


2019 ◽  
Author(s):  
Oliver Fleetwood ◽  
Pierre Matricon ◽  
Jens Carlsson ◽  
Lucie Delemotte

AbstractAgonist binding to G protein-coupled receptors (GPCRs) leads to conformational changes in the transmembrane region that activate cytosolic signaling pathways. Al-though high resolution structures of different receptor states are available, atomistic details of the allosteric signalling across the membrane remain elusive. We calculated free energy landscapes of the β2 adrenergic receptors activation using atomistic molecular dynamics simulations in an optimized string of swarms framework, which sheds new light on how microswitches govern the equilibrium between conformational states. Contraction of the extracellular binding site in the presence of the agonist BI-167107 is obligatorily coupled to conformational changes in a connector motif located in the core of the transmembrane region. The connector is probabilistically coupled to the conformation of the intracellular region. An active connector promotes desolvation of a buried cavity, a twist of the conserved NPxxY motif, and an interaction between two conserved tyrosines in transmembrane helices 5 and 7 (Y-Y motif), which leads to a larger population of active-like states at the G protein binding site. This coupling is augmented by protonation of the strongly conserved Asp792.50. The agonist binding site hence communicates with the intracellular region via a cascade of locally connected microswitches. Characterization of these can be used to understand how ligands stabilize distinct receptor states and contribute to development drugs with specific signaling properties. The developed simulation protocol is likely transferable to other class A GPCRs.Graphical TOC Entry


2021 ◽  
Author(s):  
Chao Qi ◽  
Pia Lavriha ◽  
Ved Mehta ◽  
Basavraj Khanppnavar ◽  
Inayathulla Mohammed ◽  
...  

Adenylyl cyclase 9 (AC9) is a membrane-bound enzyme that converts ATP into cAMP. The enzyme is weakly activated by forskolin, fully activated by the G protein Gαs subunit and is autoinhibited by the AC9 C-terminus. Although our recent structural studies of the AC9-Gαs complex provided the framework for understanding AC9 autoinhibition, the conformational changes that AC9 undergoes in response to activator binding remains poorly understood. Here, we present the cryo-EM structures of AC9 in several distinct states: (i) AC9 bound to a nucleotide inhibitor MANT-GTP, (ii) bound to an artificial activator (DARPin C4) and MANT-GTP, (iii) bound to DARPin C4 and a nucleotide analogue ATPαS, (iv) bound to Gαs and MANT-GTP. The artificial activator DARPin C4 partially activates AC9 by binding at a site that overlaps with the Gαs binding site. Together with the previously observed occluded and forskolin-bound conformations, structural comparisons of AC9 in the four new conformations show that secondary structure rearrangements in the region surrounding the forskolin binding site are essential for AC9 activation.


2019 ◽  
Vol 151 (4) ◽  
pp. 465-477 ◽  
Author(s):  
Tapan K. Nayak ◽  
Ridhima Vij ◽  
Iva Bruhova ◽  
Jayasha Shandilya ◽  
Anthony Auerbach

Receptors alternate between resting↔active conformations that bind agonists with low↔high affinity. Here, we define a new agonist attribute, energy efficiency (η), as the fraction of ligand-binding energy converted into the mechanical work of the activation conformational change. η depends only on the resting/active agonist-binding energy ratio. In a plot of activation energy versus binding energy (an “efficiency” plot), the slope gives η and the y intercept gives the receptor’s intrinsic activation energy (without agonists; ΔG0). We used single-channel electrophysiology to estimate η for eight different agonists and ΔG0 in human endplate acetylcholine receptors (AChRs). From published equilibrium constants, we also estimated η for agonists of KCa1.1 (BK channels) and muscarinic, γ-aminobutyric acid, glutamate, glycine, and aryl-hydrocarbon receptors, and ΔG0 for all of these except KCa1.1. Regarding AChRs, η is 48–56% for agonists related structurally to acetylcholine but is only ∼39% for agonists related to epibatidine; ΔG0 is 8.4 kcal/mol in adult and 9.6 kcal/mol in fetal receptors. Efficiency plots for all of the above receptors are approximately linear, with η values between 12% and 57% and ΔG0 values between 2 and 12 kcal/mol. Efficiency appears to be a general attribute of agonist action at receptor binding sites that is useful for understanding binding mechanisms, categorizing agonists, and estimating concentration–response relationships.


Sign in / Sign up

Export Citation Format

Share Document