scholarly journals Resting and stimulated mouse rod photoreceptors show distinct patterns of vesicle release at ribbon synapses

2020 ◽  
Vol 152 (12) ◽  
Author(s):  
Cassandra L. Hays ◽  
Asia L. Sladek ◽  
Wallace B. Thoreson

The vertebrate visual system can detect and transmit signals from single photons. To understand how single-photon responses are transmitted, we characterized voltage-dependent properties of glutamate release in mouse rods. We measured presynaptic glutamate transporter anion current and found that rates of synaptic vesicle release increased with voltage-dependent Ca2+ current. Ca2+ influx and release rate also rose with temperature, attaining a rate of ∼11 vesicles/s/ribbon at −40 mV (35°C). By contrast, spontaneous release events at hyperpolarized potentials (−60 to −70 mV) were univesicular and occurred at random intervals. However, when rods were voltage clamped at −40 mV for many seconds to simulate maintained darkness, release occurred in coordinated bursts of 17 ± 7 quanta (mean ± SD; n = 22). Like fast release evoked by brief depolarizing stimuli, these bursts involved vesicles in the readily releasable pool of vesicles and were triggered by the opening of nearby ribbon-associated Ca2+ channels. Spontaneous release rates were elevated and bursts were absent after genetic elimination of the Ca2+ sensor synaptotagmin 1 (Syt1). This study shows that at the resting potential in darkness, rods release glutamate-filled vesicles from a pool at the base of synaptic ribbons at low rates but in Syt1-dependent bursts. The absence of bursting in cones suggests that this behavior may have a role in transmitting scotopic responses.

2020 ◽  
Author(s):  
Chad Paul Grabner ◽  
Tobias Moser

AbstractRod photoreceptors (PRs) use ribbon synapses to transmit visual information. To signal ‘no light detected’ they release glutamate continually to activate post-synaptic receptors, and when light is detected glutamate release pauses. How a rod’s individual ribbon enables this process was studied here by recording evoked changes in whole-cell membrane capacitance from wild type and ribbonless (RIBEYE-ko) rods. Wild type rods created a readily releasable pool (RRP) of 92 synaptic vesicles (SVs) that emptied as a single kinetic phase with a τ < 0.4 msec. Lowering intracellular Ca2+-buffering accelerated Cav channel opening and facilitated release kinetics, but RRP size was unaltered. In contrast, ribbonless rods created an RRP of 24 SVs, and lacked Cav channel facilitation; however, Ca2+ channel-release coupling remained tight. The release deficits caused a sharp attenuation of rod-driven light responses measured from RIBEYE-ko mice. We conclude that the synaptic ribbon facilitates Ca2+-influx and establishes a large RRP of SVs.


2002 ◽  
Vol 87 (2) ◽  
pp. 925-936 ◽  
Author(s):  
Yejun He ◽  
Charles F. Zorumski ◽  
Steven Mennerick

Paired-pulse depression (PPD) of synaptic transmission is important for neuronal information processing. Historically, depletion of the readily releasable pool of synaptic vesicles has been proposed as the major component of PPD. Recent results suggest, however, that other mechanisms may be involved in PPD, including inactivation of presynaptic voltage-dependent sodium channels (NaChs), which may influence coupling of action potentials to transmitter release. In hippocampal cultures, we have examined the potential role and relative contribution of presynaptic NaCh inactivation in excitatory postsynaptic current (EPSC) PPD. Based on current- and voltage-clamp recordings from somas, our data suggest that NaCh inactivation could potentially participate in PPD. Paired stimulation of somatic action potentials (20- to 100-ms interval) results in subtle changes in action potential shape that are mimicked by low concentrations of tetrodotoxin (TTX) and that appear to be generated by a combination of fast and slow recovery from NaCh inactivation. Dilute concentrations of TTX dramatically depress glutamate release. However, we find evidence for only minimal contribution of NaCh inactivation to EPSC PPD under basal conditions. Hyperpolarization of presynaptic elements to speed recovery from inactivation or increasing the driving force on Na+ ions through active NaChs had minimal effects on PPD while more robustly reversing the effects of pharmacological NaCh blockade. On the other hand, slight depolarization of the presynaptic membrane potential, by elevating extracellular [K+]o, significantly increased PPD and frequency-dependent depression of EPSCs during short trains of action potentials. The results suggest that NaCh inactivation is poised to modulate EPSC amplitude with small tonic depolarizations that likely occur with physiological or pathophysiological activity.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Chad Paul Grabner ◽  
Tobias Moser

Rod photoreceptors (PRs) use ribbon synapses to transmit visual information. To signal 'no light detected' they release glutamate continually to activate post-synaptic receptors. When light is detected glutamate release pauses. How a rod's individual ribbon enables this process was studied here by recording evoked changes in whole-cell membrane capacitance from wild type and ribbonless (Ribeye-ko) mice. Wild type rods filled with high (10 mM) or low (0.5 mM) concentrations of the Ca2+-buffer EGTA created a readily releasable pool (RRP) of 87 synaptic vesicles (SVs) that emptied as a single kinetic phase with a τ < 0.4 msec. The lower concentration of EGTA accelerated Cav channel opening and facilitated release kinetics. In contrast, ribbonless rods created a much smaller RRP of 22 SVs, and they lacked Cav channel facilitation; however, Ca2+ channel-release coupling remained tight. These release deficits caused a sharp attenuation of rod-driven light responses. We conclude that the synaptic ribbon facilitates Ca2+-influx and establishes a large RRP of SVs.


1990 ◽  
Vol 259 (3) ◽  
pp. C402-C408 ◽  
Author(s):  
E. P. Burke ◽  
K. M. Sanders

Previous studies have suggested that the membrane potential gradient across the circular muscle layer of the canine proximal colon is due to a gradient in the contribution of the Na(+)-K(+)-ATPase. Cells at the submucosal border generate approximately 35 mV of pump potential, whereas at the myenteric border the pump contributes very little to resting potential. Results from experiments in intact muscles in which the pump is blocked are somewhat difficult to interpret because of possible effects of pump inhibitors on membrane conductances. Therefore, we studied isolated colonic myocytes to test the effects of ouabain on passive membrane properties and voltage-dependent currents. Ouabain (10(-5) M) depolarized cells and decreased input resistance from 0.487 +/- 0.060 to 0.292 +/- 0.040 G omega. The decrease in resistance was attributed to an increase in K+ conductance. Studies were also performed to measure the ouabain-dependent current. At 37 degrees C, in cells dialyzed with 19 mM intracellular Na+ concentration [( Na+]i), ouabain caused an inward current averaging 71.06 +/- 7.49 pA, which was attributed to blockade of pump current. At 24 degrees C or in cells dialyzed with low [Na+]i (11 mM), ouabain caused little change in holding current. With the input resistance of colonic cells, pump current appears capable of generating at least 35 mV. Thus an electrogenic Na+ pump could contribute significantly to membrane potential.


2015 ◽  
Vol 290 (40) ◽  
pp. 24326-24339 ◽  
Author(s):  
Sándor Lovas ◽  
David Z. Z. He ◽  
Huizhan Liu ◽  
Jie Tang ◽  
Jason L. Pecka ◽  
...  

2007 ◽  
Vol 27 (9) ◽  
pp. 1540-1552 ◽  
Author(s):  
Selva Baltan Tekkök ◽  
ZuCheng Ye ◽  
Bruce R Ransom

Axonal injury and dysfunction in white matter (WM) are caused by many neurologic diseases including ischemia. We characterized ischemic injury and the role of glutamate-mediated excitotoxicity in a purely myelinated WM tract, the mouse optic nerve (MON). For the first time, excitotoxic WM injury was directly correlated with glutamate release. Oxygen and glucose deprivation (OGD) caused duration-dependent loss of axon function in optic nerves from young adult mice. Protection of axon function required blockade of both α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and kainate receptors, or removal of extracellular Ca2+. Blockade of N-methyl-D-aspartate receptors did not preserve axon function. Curiously, even extended periods of direct exposure to glutamate or kainate or AMPA failed to induce axon dysfunction. Brief periods of OGD, however, caused glutamate receptor agonist exposure to become toxic, suggesting that ionic disruption enabled excitotoxic injury. Glutamate release, directly measured using quantitative high-performance liquid chromatography, occurred late during a 60-mins period of OGD and was due to reversal of the glutamate transporter. Brief periods of OGD (i.e., 15 mins) did not cause glutamate release and produced minimal injury. These results suggested that toxic glutamate accumulation during OGD followed the initial ionic changes mediating early loss of excitability. The onset of glutamate release was an important threshold event for irreversible ischemic injury. Regional differences appear to exist in the specific glutamate receptors that mediate WM ischemic injury. Therapy for ischemic WM injury must be designed accordingly.


Endocrinology ◽  
2010 ◽  
Vol 151 (3) ◽  
pp. 1079-1088 ◽  
Author(s):  
Wiebke Hirdes ◽  
Crenguta Dinu ◽  
Christiane K. Bauer ◽  
Ulrich Boehm ◽  
Jürgen R. Schwarz

Secretion of LH from gonadotropes is initiated by a GnRH-induced increase in intracellular Ca2+ concentration ([Ca2+]i). This increase in [Ca2+]i is the result of Ca2+ release from intracellular stores and Ca2+ influx through voltage-dependent Ca2+ channels. Here we describe an ether-à-go-go-related gene (erg) K+ current in primary mouse gonadotropes and its possible function in the control of Ca2+ influx. To detect gonadotropes, we used a knock-in mouse strain, in which GnRH receptor-expressing cells are fluorescently labeled. Erg K+ currents were recorded in 80–90% of gonadotropes. Blockage of erg currents by E-4031 depolarized the resting potential by 5–8 mV and led to an increase in [Ca2+]i, which was abolished by nifedipine. GnRH inhibited erg currents by a reduction of the maximal erg current and in some cells additionally by a shift of the activation curve to more positive potentials. In conclusion, the erg current contributes to the maintenance of the resting potential in gonadotropes, thereby securing a low [Ca2+]i by restricting Ca2+ influx. In addition, the erg channels are modulated by GnRH by an as-yet unknown signal cascade.


Sign in / Sign up

Export Citation Format

Share Document