scholarly journals Mechanism of Excitation of Aplysia Neurons by Carbon Dioxide

1970 ◽  
Vol 56 (5) ◽  
pp. 543-558 ◽  
Author(s):  
A. M. Brown ◽  
P. R. Berman

The abdominal ganglion of Aplysia californica was perfused with artificial seawater equilibrated at different PCOCO2's and pH's for 5 min or less. 5% CO2 dropped perfusate pH from 8.0 to 6.5 and produced depolarization and increased discharge rate in visceromotor neurons. Half the giant cells studied had a similar response, whereas the other half were hyperpolarized. Pacemaker neurons showed little, if any, response to such changes in pH or CO2. Membrane conductance of responsive cells was always increased. The effect of CO2 occurred even when synaptic transmission was blocked by low calcium and high magnesium, and therefore must have been a direct result of CO2 or the concomitant fall in pH. When extracellular pH was lowered to 6.5 using HCl or H2SO4 and no CO2, the same effects were observed. Also, local application of HCl or H2SO4 to the external surface of the cell soma elicited depolarization and spike discharge. When extracellular pH was held constant by continual titration, 5–50% CO2 had no effect. Intracellular pH was probably decreased at least one pH unit under these circumstances. Thus CO2 per se, decreased intracellular pH, and increased bicarbonate ion were without effect. It is concluded that CO2 acts solely through a decrease in extracellular pH.

1996 ◽  
Vol 80 (4) ◽  
pp. 1090-1099 ◽  
Author(s):  
S. Lahiri ◽  
R. Iturriaga ◽  
A. Mokashi ◽  
F. Botre ◽  
D. Chugh ◽  
...  

The hypotheses that the chemosensory discharge rate parallels the intracellular pH (pHi) during hypercapnia and that the initial change in pHi (delta pHi) is always more than the stead-state delta pHi were studied by using cat carotid bodies in vitro at 36.5 degrees C in the absence and presence of methazolamide (30-100 mg/l). Incremental acidic hypercapnia was followed by an incremental initial peak response and a greater adaptation. A given acidic hypercapnia elicited a rapid initial response followed by a slower adaptation; isohydric hypercapnia produced an equally rapid initial response but of smaller magnitude that returned to near-baseline level; alkaline hypercapnia induced a similar rapid initial response but one of still smaller magnitude that decreased rapidly to below the baseline. Methazolamide eliminated the initial overshoot, which also suggested involvement of the initial rapid pHi in the overshoot. These results show that the initial delta pHi is always greater than the steady-state delta pHi and during hypercapnia. Also, the steady-state chemoreceptor activity varied linearly with the extracellular pH, indicating a linear relationship between extracellular pH and pHi.


The α action of catecholamines on oestrogen dominated guinea-pig uterus is stimulant. The cell membrane is depolarized, membrane conductance is increased, spike discharge is accelerated and tension develops. This action resembles that of acetylcholine though catecholamines are less potent, and, in equiactive concentrations, catecholamines have a longer latency and a longer duration of action. Evidence, obtained by modifications of the ionic environment, indicates that the depolarization by acetylcholine is due to an increase in sodium and calcium permeability and that acetylcholine can release calcium from intracellular stores. The depolarization by catecholamines is due to an increase in chloride permeability and, in addition, sodium is required for the ensuing increase of spike discharge. Catecholamines produce an increase in the force of contraction, long outlasting their immediate stimulation. Moreover, their effect on membrane potential and membrane conductance persists in the presence of lanthanum. These results suggest that Ca release from intracellular stores may be the primary effect produced by the α action of catecholamines and that the increase in the cytoplasmic Ca 2+ concentration may cause the changes at the cell membrane.


1996 ◽  
Vol 271 (3) ◽  
pp. R738-R750 ◽  
Author(s):  
Y. Wang ◽  
G. J. Heigenhauser ◽  
C. M. Wood

Manipulations of pH and electrical gradients in a perfused preparation were used to analyze the factors controlling ammonia distribution and flux in trout white muscle after exercise. Trout were exercised to exhaustion, and then an isolated-perfused white muscle preparation with discrete arterial inflow and venous outflow was made from the posterior portion of the tail. The tail-trunks were perfused with low (7.4)-, medium (7.9)-, and high (8.4)-pH saline, achieved by varying HCO3- concentration ([HCO3-]) at constant Pco2. Intracellular and extracellular pH, ammonia, CO2, K+, Na+, and Cl- were measured. Muscle intracellular pH was not affected by changes in extracellular pH. Increasing extracellular pH caused a decrease in the transmembrane NH3 partial pressure (PNH3) gradient and a decrease in ammonia efflux. When extracellular K+ concentration was increased from 3.5 to 15 mM in the medium-pH group, a depolarization of the muscle cell membrane potential from -92 to -60 mV and a 0.1-unit depression in intracellular pH occurred. Ammonia efflux increased despite a marked reduction in the PNH3 gradient. Amiloride (10(-4) M) had no effect, indicating that Na+/H(+)-NH4+ exchange does not participate in ammonia transport in this system. A comparison of observed intracellular-to-extracellular ammonia distribution ratios with those modeled according to either pH or Nernst potential distributions supports a model in which ammonia distribution across white muscle cell membranes is affected by both pH and electrical gradients, indicating that the membranes are permeable to both NH3 and NH4+. Membrane potential, acting to retain high levels of NH4+ in the intracellular compartment, appears to have the dominant influence during the postexercise period. However, at rest, the pH gradient may be more important, resulting in much lower intracellular ammonia levels and distribution ratios. We speculate that the muscle cell membrane NH3-to-NH4+ permeability ratio in trout may change between the rest and postexercise condition.


1989 ◽  
Vol 256 (3) ◽  
pp. C486-C494 ◽  
Author(s):  
A. Elgavish ◽  
E. Meezan

We previously reported the presence of a carrier-mediated sulfate transport system in human lung fibroblasts (IMR-90) (A. Elgavish, J. B. Smith, D. J. Pillion, and E. Meezan. J. Cell. Physiol. 125: 243-250, 1985). Kinetic studies carried out in the lung fibroblasts show that Cl- inhibits SO4(2-) uptake in a competitive manner. Taken together with the fact that high extracellular Cl- stimulates SO4(2-) efflux, these results suggest that SO4(2-) uptake into lung fibroblasts occurs via a SO4(2-)-Cl- exchange mechanism. Extracellular HCO3- inhibits sulfate influx in a competitive manner (pH 7.5) but has no marked effect on sulfate efflux. SO4(2-) and HCO3- may therefore have the ability to bind to a common extracellular anion binding site, but they do not appear to exchange for one another. Lowering extracellular pH has a stimulatory effect on the initial rate of sulfate uptake. The pK of the extracellular pH effect is around pH 7.0, indicating that small changes in the extracellular pH around the ambient levels encountered under physiological conditions will markedly affect sulfate influx into the cell. Kinetic studies suggest that lowering extracellular pH increases the initial rate of sulfate influx by increasing the affinity of the carrier for sulfate twofold. Lowering intracellular pH inhibits the initial rate of sulfate influx into the cell. The pK of this intracellular pH effect is also around pH 7.0, indicating that physiological levels of intracellular protons are necessary for the normal activity of the anion exchanger.(ABSTRACT TRUNCATED AT 250 WORDS)


1998 ◽  
Vol 64 (2) ◽  
pp. 530-534 ◽  
Author(s):  
Lars Uhre Guldfeldt ◽  
Nils Arneborg

ABSTRACT The effects of acetic acid and extracellular pH (pHex) on the intracellular pH (pHi) of nonfermenting, individualSaccharomyces cerevisiae cells were studied by using a new experimental setup comprising a fluorescence microscope and a perfusion system. S. cerevisiae cells grown in brewer’s wort to the stationary phase were stained with fluorescein diacetate and transferred to a perfusion chamber. The extracellular concentration of undissociated acetic acid at various pHex values was controlled by perfusion with 2 g of total acetic acid per liter at pHex 3.5, 4.5, 5.6, and 6.5 through the chamber by using a high-precision pump. The pHi of individual S. cerevisiae cells during perfusion was measured by fluorescence microscopy and ratio imaging. Potential artifacts, such as fading and efflux of fluorescein, could be neglected within the experimental time used. At pHex 6.5, the pHi of individualS. cerevisiae cells decreased as the extracellular concentration of undissociated acetic acid increased from 0 to 0.035 g/liter, whereas at pHex 3.5, 4.5, and 5.6, the pHi of individual S. cerevisiae cells decreased as the extracellular concentration of undissociated acetic acid increased from 0 to 0.10 g/liter. At concentrations of undissociated acetic acid of more than 0.10 g/liter, the pHi remained constant. The decreases in pHi were dependent on the pHex; i.e., the decreases in pHi at pHex 5.6 and 6.5 were significantly smaller than the decreases in pHi at pHex 3.5 and 4.5.


mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Hélène Tournu ◽  
Arturo Luna-Tapia ◽  
Brian M. Peters ◽  
Glen E. Palmer

ABSTRACT Candida albicans is an opportunistic fungal pathogen that colonizes the reproductive and gastrointestinal tracts of its human host. It can also invade the bloodstream and deeper organs of immunosuppressed individuals, and thus it encounters enormous variations in external pH in vivo. Accordingly, survival within such diverse niches necessitates robust adaptive responses to regulate intracellular pH. However, the impact of antifungal drugs upon these adaptive responses, and on intracellular pH in general, is not well characterized. Furthermore, the tools and methods currently available to directly monitor intracellular pH in C. albicans, as well as other fungal pathogens, have significant limitations. To address these issues, we developed a new and improved set of pH sensors based on the pH-responsive fluorescent protein pHluorin. This includes a cytoplasmic sensor, a probe that localizes inside the fungal vacuole (an acidified compartment that plays a central role in intracellular pH homeostasis), and a cell surface probe that can detect changes in extracellular pH. These tools can be used to monitor pH within single C. albicans cells or in cell populations in real time through convenient and high-throughput assays. Environmental or chemically induced stresses often trigger physiological responses that regulate intracellular pH. As such, the capacity to detect pH changes in real time and within live cells is of fundamental importance to essentially all aspects of biology. In this respect, pHluorin, a pH-sensitive variant of green fluorescent protein, has provided an invaluable tool to detect such responses. Here, we report the adaptation of pHluorin2 (PHL2), a substantially brighter variant of pHluorin, for use with the human fungal pathogen Candida albicans. As well as a cytoplasmic PHL2 indicator, we describe a version that specifically localizes within the fungal vacuole, an acidified subcellular compartment with important functions in nutrient storage and pH homeostasis. In addition, by means of a glycophosphatidylinositol-anchored PHL2-fusion protein, we generated a cell surface pH sensor. We demonstrated the utility of these tools in several applications, including accurate intracellular and extracellular pH measurements in individual cells via flow cytometry and in cell populations via a convenient plate reader-based protocol. The PHL2 tools can also be used for endpoint as well as time course experiments and to conduct chemical screens to identify drugs that alter normal pH homeostasis. These tools enable observation of the highly dynamic intracellular pH shifts that occur throughout the fungal growth cycle, as well as in response to various chemical treatments. IMPORTANCE Candida albicans is an opportunistic fungal pathogen that colonizes the reproductive and gastrointestinal tracts of its human host. It can also invade the bloodstream and deeper organs of immunosuppressed individuals, and thus it encounters enormous variations in external pH in vivo. Accordingly, survival within such diverse niches necessitates robust adaptive responses to regulate intracellular pH. However, the impact of antifungal drugs upon these adaptive responses, and on intracellular pH in general, is not well characterized. Furthermore, the tools and methods currently available to directly monitor intracellular pH in C. albicans, as well as other fungal pathogens, have significant limitations. To address these issues, we developed a new and improved set of pH sensors based on the pH-responsive fluorescent protein pHluorin. This includes a cytoplasmic sensor, a probe that localizes inside the fungal vacuole (an acidified compartment that plays a central role in intracellular pH homeostasis), and a cell surface probe that can detect changes in extracellular pH. These tools can be used to monitor pH within single C. albicans cells or in cell populations in real time through convenient and high-throughput assays.


1997 ◽  
Vol 17 (5) ◽  
pp. 560-566 ◽  
Author(s):  
Eugene L. Roberts ◽  
Ching-Ping Chih

Changes in intracellular and extracellular pH may influence the vulnerability of brain tissue to anoxic or ischemic damage. In the present study, we investigated whether the increased vulnerability of aged brain tissue to anoxic damage is associated with age-related alterations in pH regulation. We obtained evidence for altered pH regulation by measuring concurrent changes in intracellular and extracellular pH before, during, and after anoxia in hippocampal slices from young adult (6–8 months old) and aged (24–27 months old) rats. We found indications of impaired pH regulation in aged hippocampal slices (a) before anoxia, as seen in a lower resting intracellular pH, (b) during anoxia, as seen in a slower decline in extracellular pH, and (c) during recovery after anoxia, as seen in a slower rate of recovery of intracellular pH. Age-related changes in pH regulation may contribute to the faster onset of anoxic depolarization in aged brain tissue during anoxia.


1973 ◽  
Vol 45 (4) ◽  
pp. 543-549 ◽  
Author(s):  
M. H. Lloyd ◽  
R. A. Iles ◽  
B. R. Simpson ◽  
J. M. Strunin ◽  
J. M. Layton ◽  
...  

1. The relationship between extracellular pH (pHe), intracellular pH (pHi) and lactate uptake was studied in the isolated perfused rat liver during simulated metabolic acidosis. 2. pHi fell to a considerably less extent than pHe when the latter was decreased from pH 7·4 to 6·7. 3. The liver took up lactate when pHi was greater than 7·0; at lower values of pHi lactate output occurred. 4. The relevance of these observations to the control of hepatic pHi and lactate metabolism is discussed.


ACS Sensors ◽  
2020 ◽  
Vol 5 (7) ◽  
pp. 2155-2167 ◽  
Author(s):  
Xingjuan Zhao ◽  
Shirley Campbell ◽  
Gregory Q. Wallace ◽  
Audrey Claing ◽  
C. Geraldine Bazuin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document