scholarly journals Intestinal Transport of Weak Electrolytes

1974 ◽  
Vol 63 (2) ◽  
pp. 187-213 ◽  
Author(s):  
Michael J. Jackson ◽  
Yih-Fu Shiau ◽  
Susan Bane ◽  
Margaret Fox

A study has been made of the transmural fluxes of benzoic, phenylacetic, and pentanoic acids, benzylamine, hexylamine, and D-amphetamine across rat jejunum incubated in vitro. The M to S fluxes of the weak acids were greater than their corresponding S to M fluxes, and the S to M fluxes of the weak bases were larger than their M to S fluxes. These patterns of asymmetric movements were observed when the transmural electrical potential difference was clamped at 0 mV, and when the pH values of the mucosal and serosal fluids were identical. The effects of a weak acid on the fluxes of other weak electrolytes were qualitatively similar when the effector weak acid was added to the mucosal fluid, and when it was added to the serosal fluid. But the effects of a weak base on the fluxes of other weak electrolytes were dependent upon its location, and the interactions observed when the effector weak base was added to the mucosal fluid were qualitatively different than those seen when it was added to the serosal fluid. The interactions between weak electrolytes could readily be explained in terms of the function of a system of three compartments in series, in which the pH of the intermediate compartment is greater than that of the bulk phases. But these observations could not be explained in terms of an analogous system involving an intermediate compartment of low pH, or in terms of a carrier mediated system. The transport function of the three-compartment system can be described in the form of an equation, and it is found that a pH difference of less than 0.5 unit may explain our observations on weak electrolyte transport.

1987 ◽  
Vol 253 (2) ◽  
pp. G211-G216
Author(s):  
B. R. Grubb ◽  
P. J. Bentley

Transmural electrical potential difference, short-circuit current (Isc), and resistance were measured in vitro in the intestines of chickens. In birds maintained on a low-Na diet, there was a rise in Isc in the ileum and the colon but not in the duodenum or jejunum. A substantial portion of this Isc could be inhibited by the Na channel-blocking drug, amiloride. The low-Na diet results in elevated plasma levels of aldosterone and the effects of the diet on intestinal transport could be mimicked by administration of this hormone. The time course of the effects of these two treatments on the ileum and colon were quite different, as a much longer exposure was needed to elicit maximal effects in the ileum than in the colon, possibly due to the presence of two types of adaptation mechanisms. The responses observed may reflect an adaptation of mechanisms for increasing Na transport from the intestine. The presence of such a mechanism in the vertebrate ileum has until recently been in doubt.


1975 ◽  
Vol 67 (1) ◽  
pp. 119-125
Author(s):  
P. J. BENTLEY

SUMMARY The electrical potential difference and short-circuit current (scc, reflecting active transmural sodium transport) across the toad urinary bladder in vitro was unaffected by the presence of hypo-osmotic solutions bathing the mucosal (urinary) surface, providing that the transmural flow of water was small. Vasopressin increased the scc across the toad bladder (the natriferic response), but this stimulation was considerably reduced in the presence of a hypo-osmotic solution on the mucosal side, conditions under which water transfer across the membrane was also increased. This inhibition of the natriferic response did not depend on the direction of the water movement, for if the osmotic gradient was the opposite way to that which normally occurs, the response to vasopressin was still reduced. The natriferic response to cyclic AMP was also inhibited in the presence of an osmotic gradient. Aldosterone increased the scc and Na+ transport across the toad bladder but this response was not changed when an osmotic gradient was present. The physiological implications of these observations and the possible mechanisms involved are discussed.


1978 ◽  
Vol 44 (6) ◽  
pp. 900-904 ◽  
Author(s):  
M. G. Marin ◽  
M. M. Zaremba

Active transport of Cl- toward the tracheal lumen and Na+ away from the lumen creates an electrical potential difference across dog tracheal epithelium. This study examined in vitro the effect of varying calcium concentration in the bathing media on the ion transport and electrical properties of dog tracheal epithelium. In six pairs of epithelia, changing calcium concentration from 1.9 to 0 mM resulted in a significant decrease in electrical resistance, from 318 +/- 36 to 214 +/- 24 omega.cm2. Short-circuit current and net Cl- and Na+ fluxes measured under short-circuit conditions were not changed significantly. Changing calcium concentration from 1.9 to 10 mM resulted in no significant change from control in the electrical properties nor in net Cl- and Na+ fluxes (short-circuit conditions). Histamine (10(-4) M) produced a significantly smaller increase in short-circuit current in 0 than in 1.9 mM Ca2+ (+5 +/- 2 vs. +12 +/- 2 microamperemeter/cm2). However, electrical changes were not significantly different in 1 or 10 mM Ca2+. These results indicate that calcium lack increased permeability of tracheal epithelium and that the increase in short-circuit current due to histamine depended in part on calcium.


1975 ◽  
Vol 228 (6) ◽  
pp. 1808-1814 ◽  
Author(s):  
HN Nellans ◽  
RA Frizzell ◽  
SG Schultz

Acetazolamide (8 mM) aboishes active Cl absorption and inhibits but does not abolish active Na absorption by stripped, short-circuited rabbit ileum. These effects are not accompanied by significant changes in the transmural electrical potential difference or short-circuit current. Studies of the undirectional influxes of Na andCl indicate that acetazolamide inhibits the neutral, coupled NaCl influx process at the mucosal membranes. This action appears to explain the observed effect of acetazolamide on active, transepithelial Na and Cl transport. Acetazolamide did not significantly inhibit either spontaneous or theophylline-induced Cl secretion by this preparation, suggesting that the theophylline-induced secretion may not simply be due tothe unmasking of a preexisting efflux process when the neutral influx mechanism is inhibited by theophylline. Finally, inhibition of the neutral NaCl influx process by acetazolamide does not appear to be attributable to an inhibition of endogenous HCO3production or an elevation in intracellular cyclic-AMP levels. Instead, it appearstheat the effect of acetazolamide is due to a direct interaction with a membrane component involved in the coupled influx process.


1980 ◽  
Vol 239 (3) ◽  
pp. G198-G203 ◽  
Author(s):  
G. Flemstrom

An in vitro preparation of proximal duodenum from the bullfrog transported alkali into the luminal solution (approximately 1 mueq x h-1 x cm-2) and generated a transepithelial electrical potential difference (5-10 mV, lumen negative). Transport was inhibited by 2,4-dinitrophenol (10(-5) M), CN- (5 X 10(-3) M), indomethacin (5 X 10(-5) M), and acetazolamide (5 X 10(-3) M) indicating that metabolism is required. Both alkali transport and the electrical potential difference showed a dose-dependent increase on administration of the prostaglandins E2, 16,16-dimethyl E2, and F2 alpha. The minimal concentration stimulating transport was lower with the E-type prostaglandins (10(-8) M than with F2 alpha (10(-6) M), and the former also produced greater maximal responses. In addition to metabolic-dependent transport of alkali, there was passive transmucosal migration of HCO3-, amounting to approximately 40% of basal (unstimulated) transport and sensitive to variation of the transmucosal hydrostatic pressure. Morphological examination showed that the preparation is devoid of Brunner glands. Stimulation of duodenal epithelial HCO3- transport by prostaglandins may contribute to their previously demonstrated ability to prevent duodenal ulceration.


1989 ◽  
Vol 77 (2) ◽  
pp. 161-166 ◽  
Author(s):  
K. J. Moriarty ◽  
N. B. Higgs ◽  
M. Woodford ◽  
L. A. Turnberg

1. Cholera toxin stimulates intestinal secretion in vitro by activation of mucosal adenylate cyclase. However, it has been proposed that cholera toxin promotes secretion in vivo mainly through an indirect mechanism involving enteric neural reflexes. 2. We examined this hypothesis further by studying the influence of neuronal blockade on cholera toxin-induced changes in fluid transport across rabbit ileum in vitro. Mucosa, stripped of muscle layers, was mounted in flux chambers and luminal application of crude cholera toxin (2 μg/ml) caused a delayed but sustained rise in the short-circuit current, electrical potential difference and Cl− secretion. Pretreatment with the nerve-blocking drug, tetrodotoxin (5 × 10−6 mol/l serosal side), failed to influence the secretory response to cholera toxin, and addition of tetrodotoxin at the peak response to cholera toxin also had no effect. 3. That tetrodotoxin could block neurally mediated secretagogues was confirmed by the demonstration that the electrical responses to neurotensin (10−7 mol/l and 10−8 mol/l) were blocked by tetrodotoxin (5 × 10−6 mol/l). Furthermore, the response to cholera toxin of segments of ileum, which included the myenteric, submucosal and mucosal nerve plexuses, was not inhibited by tetrodotoxin. 4. We conclude that cholera toxin-induced secretion in rabbit ileum in vitro is not mediated via a neurological mechanism.


1980 ◽  
Vol 239 (3) ◽  
pp. R285-R290
Author(s):  
E. Skadhauge ◽  
T. J. Dawson

The lower intestine (coprodeum and colon) of the Australian parrot, the galah, was mounted in Ussing chambers. Short-circuit current (SCC), electrical potential difference (PD), and unidirectional fluxes of Na and Cl were measured in birds that were fed mixed seeds or were NaCl loaded. The net Na transport of both coprodeum and colon was nearly equal to the SCC, and the flux ratio for Cl was unity. In birds which received mixed seeds, average coprodeal Na transport was 7.8 mu eq . cm-2 . h-1, and PD was 19 mV. The Km for Na was 5.7 meq/l. In colon, Na transport was reduced by 67% and PD by 70%. The ratio between unidirectional Na and Cl fluxes in the serosa-mucosa direction was 0.7. Salt loading suppressed coprodeal, but increased colonic Na transport. The coprodeal and colonic SCC and NA transport of birds receiving mixed seeds were inhibited by amiloride on the mucosal side. Colonic SCC of NaCl-loaded birds was only slightly reduced by amiloride (by 17%), but stimulated by amino acids (by 18%).


1975 ◽  
Vol 62 (2) ◽  
pp. 367-378
Author(s):  
S. H. P. MADDRELL ◽  
J. E. PHILLIPS

1. Larvae of Aedes campestris ingest and absorb into their haemolymph large quantities of the sulphate-rich water in which they live, yet they are able to maintain the sulphate content of the haemolymph well below that of the environment. 2. Tracer experiments showed that sulphate regulation was not achieved by deposition of precipitates in the tissues. 3. In vitro preparations of Malpighian tubules secrete sulphate ions actively against both a three times concentration gradient and an electrical potential difference of 20 mV. This transport is half saturated at about 10 mM. 4. The rate of sulphate secretion by the Malpighian tubules is sufficient to remove all of the sulphate ingested by larvae living in waters which contain less than 100 mM of this anion. At higher concentrations, sulphate ions are probably also excreted elsewhere, perhaps by the rectum or anal papillae.


1975 ◽  
Vol 152 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Eric S. Holdsworth ◽  
John E. Jordan ◽  
Ellen Keenan

An apparatus is described that allows perfusion of a non-everted segment of intestine in vitro and the study of the accumulation of substances within the mucosal cells. The translocation of Ca2+ by rachitic-chick ileum and the effect of pretreatment with cholecalciferol was investigated, with the following conclusions. (1) Entry of Ca2+ across the microvilli into mucosal cells is by diffusion; it does not require metabolic energy or the presence of any other inorganic ions. (2) Pretreatment of the chick with cholecalciferol causes increased permeability of the microvillus to Ca2+ in both directions (lumen to cell, cell to lumen). The increased transport brought about by cholecalciferol in vivo can be partially mimicked by sodium dodecyl sulphate added in vitro. (3) The sign and the magnitude of the electrical potential difference prevailing across the ileum does not influence Ca2+ transport. (4) Exit of Ca2+ from the mucosal cell is temperature-sensitive, requires metabolic energy and Na+. (5) Pretreatment with cholecalciferol caused increased movement of Ca2+ out of the cell across the basement membranes. This effect of cholecalciferol given in vivo could be markedly increased by the presence of dicyclohexylcarbodi-imide in the perfusion fluid. These observations suggested that cholecalciferol increased Ca2+ entry (and exit) at the mucosal surface and also caused Ca2+ to be more available to the pump at the serosal surface.


1982 ◽  
Vol 97 (1) ◽  
pp. 197-216
Author(s):  
J. C. Cornell

1. Measurements of electrical potential difference (PD), short-circuit current (SCC) and unidirectional fluxes of sodium and chloride were made across portions of the intestine. Based on the results, the intestine can be divided into at least four physiologically distinct regions. 2. These four physiological regions, designated from anterior to posterior as R I-II, R III A, R III B and R IV, do not completely correspond to the four anatomically distinct regions of the intestine. 3. The PD (serosal side positive) in R I-II, R III A, R III B and R IV is 1.08, 12.4, 5.61 and 31.7 mV, respectively. 4. The SCC in these same regions is 9.9, 50.4, 49.7, and 16.4 micro A cm2, respectively. 5. When short-circuited, net sodium and net chloride fluxes in the above regions are −0.36 and −0.27, 1.46*** and −0.92*, 1.74*** and −0.06 and 1.01*** and 0.07 mumol cm-2 h-1, respectively. Positive fluxes indicate net mucosal to serosal movements and asterisks indicate significant net fluxes (* P less than 0.05, *** P less than 0.001). 6. There is good agreement between the SCC and net sodium transport in R III B. In the other regions of the intestine the ionic basis of the SCC has not been completely explained. 7. The properties of the intestine in vitro appear to make the intestine well suited for the task of conserving sodium, a function which the intestine performs in vivo.


Sign in / Sign up

Export Citation Format

Share Document