High-frequency emission of X-ray pulsar 1E 2259+586

1993 ◽  
Vol 410 ◽  
pp. 761 ◽  
Author(s):  
V. V. Usov
Author(s):  
W. E. Lee ◽  
A. H. Heuer

IntroductionTraditional steatite ceramics, made by firing (vitrifying) hydrous magnesium silicate, have long been used as insulators for high frequency applications due to their excellent mechanical and electrical properties. Early x-ray and optical analysis of steatites showed that they were composed largely of protoenstatite (MgSiO3) in a glassy matrix. Recent studies of enstatite-containing glass ceramics have revived interest in the polymorphism of enstatite. Three polymorphs exist, two with orthorhombic and one with monoclinic symmetry (ortho, proto and clino enstatite, respectively). Steatite ceramics are of particular interest a they contain the normally unstable high-temperature polymorph, protoenstatite.Experimental3mm diameter discs cut from steatite rods (∼10” long and 0.5” dia.) were ground, polished, dimpled, and ion-thinned to electron transparency using 6KV Argon ions at a beam current of 1 x 10-3 A and a 12° angle of incidence. The discs were coated with carbon prior to TEM examination to minimize charging effects.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4017
Author(s):  
Dorota Szwagierczak ◽  
Beata Synkiewicz-Musialska ◽  
Jan Kulawik ◽  
Norbert Pałka

New ceramic materials based on two copper borates, CuB2O4 and Cu3B2O6, were prepared via solid state synthesis and sintering, and characterized as promising candidates for low dielectric permittivity substrates for very high frequency circuits. The sintering behavior, composition, microstructure, and dielectric properties of the ceramics were investigated using a heating microscope, X-ray diffractometry, scanning electron microscopy, energy dispersive spectroscopy, and terahertz time domain spectroscopy. The studies revealed a low dielectric permittivity of 5.1–6.7 and low dielectric loss in the frequency range 0.14–0.7 THz. The copper borate-based materials, owing to a low sintering temperature of 900–960 °C, are suitable for LTCC (low temperature cofired ceramics) applications.


Author(s):  
Nataliya L. Gulay ◽  
Rolf-Dieter Hoffmann ◽  
Jutta Kösters ◽  
Yaroslav M. Kalychak ◽  
Stefan Seidel ◽  
...  

Abstract The equiatomic indide ScPtIn (ZrNiAl type, space group P 6 ‾ $‾{6}$ 2m) shows an extended solid solution Sc3Pt3–xIn3. Several samples of the Sc3Pt3–xIn3 series were synthesized from the elements by arc-melting and subsequent annealing, or directly in a high frequency furnace. The lowest platinum content was observed for Sc3Pt2.072(3)In3. All samples were characterized by powder X-ray diffraction and their lattice parameters and several single crystals were studied on the basis of precise single crystal X-ray diffractometer data. The correct platinum occupancy parameters were refined from the diffraction data. Decreasing platinum content leads to decreasing a and c lattice parameters. Satellite reflections were observed for the Sc3Pt3–xIn3 crystals with x = 0.31–0.83. These satellite reflections could be described with a modulation vector ( 1 3 , 1 3 , γ ) $\left(\frac{1}{3},\frac{1}{3},\gamma \right)$ ( γ = 1 2 $\gamma =\frac{1}{2}$ c* for all crystals) and are compatible with trigonal symmetry. The interplay of platinum filled vs. empty In6 trigonal prisms is discussed for an approximant structure with space group P3m1.


1928 ◽  
Vol 24 (2) ◽  
pp. 259-267
Author(s):  
James Taylor ◽  
Wilfrid Taylor

Experiments have been conducted by Gutton, and later by Kirchner, and by Gill and Donaldson upon electrical discharges through gases under the influence of high-frequency oscillations of the order of 107 cycles per second. It was found that the peak voltages required to maintain bright luminous discharges were of the order of 100 volts even when the pressure was as low as that in a soft X-ray tube. The present paper deals with some further studies of these phenomena.


2011 ◽  
Vol 66 (7) ◽  
pp. 671-676 ◽  
Author(s):  
Trinath Mishra ◽  
Rainer Pöttgen

The equiatomic rare earth compounds REPtZn (RE = Y, Pr, Nd, Gd-Tm) were synthesized from the elements in sealed tantalum tubes by high-frequency melting at 1500 K followed by annealing at 1120 K and quenching. The samples were characterized by powder X-ray diffraction. The structures of four crystals were refined from single-crystal diffractometer data: TiNiSi type, Pnma, a = 707.1(1), b = 430.0(1), c = 812.4(1) pm, wR2 = 0.066, 602 F2, 21 variables for PrPt1.056Zn0.944; a = 695.2(1), b = 419.9(1), c = 804.8(1) pm, wR2 = 0.041, 522 F2, 21 variables for GdPt0.941Zn1.059; a = 688.2(1), b = 408.1(1), c = 812.5(1) pm, wR2 = 0.041, 497 F2, 22 variables for HoPt1.055Zn0.945; a = 686.9(1), b = 407.8(1), c = 810.4(1) pm, wR2 = 0.061, 779 F2, 20 variables for ErPtZn. The single-crystal data indicate small homogeneity ranges REPt1±xZn1±x. The platinum and zinc atoms build up three-dimensional [PtZn] networks (265 - 269 pm Pt-Zn in ErPtZn) in which the erbium atoms fill cages with coordination number 16 (6 Pt + 6 Zn + 4 Er). Bonding of the erbium atoms to the [PtZn] network proceeds via shorter RE-Pt distances, i. e. 288 - 293 pm in ErPtZn.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Misbah Shahzadi ◽  
Martin Kološ ◽  
Zdeněk Stuchlík ◽  
Yousaf Habib

AbstractThe study of the quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole (BH) binaries or quasars can provide a powerful tool for testing the phenomena occurring in strong gravity regime. We thus fit the data of QPOs observed in the well known microquasars as well as active galactic nuclei (AGNs) in the framework of the model of geodesic oscillations of Keplerian disks modified for the epicyclic oscillations of spinning test particles orbiting Kerr BHs. We show that the modified geodesic models of QPOs can explain the observational fixed data from the microquasars and AGNs but not for all sources. We perform a successful fitting of the high frequency QPOs models of epicyclic resonance and its variants, relativistic precession and its variants, tidal disruption, as well as warped disc models, and discuss the corresponding constraints of parameters of the model, which are the spin of the test particle, mass and rotation of the BH.


2002 ◽  
Vol 382 (1) ◽  
pp. L1-L4 ◽  
Author(s):  
I. E. Papadakis ◽  
W. Brinkmann ◽  
H. Negoro ◽  
M. Gliozzi
Keyword(s):  

2005 ◽  
Vol 60 (3) ◽  
pp. 265-270 ◽  
Author(s):  
Rainer Kraft ◽  
Rainer Pöttgen

The rare earth metal (RE)-magnesium-thallides REMgTl (RE = Y, La-Nd, Sm, Gd-Tm, Lu) were prepared from the elements in sealed tantalum tubes in a water-cooled sample chamber of a high-frequency furnace. The thallides were characterized through their X-ray powder patterns. They crystallize with the hexagonal ZrNiAl type structure, space group P62m, with three formula units per cell. Four structures were refined from X-ray single crystal diffractometer data: α = 750.5(1), c = 459.85(8) pm, wR2 = 0.0491, 364 F2 values, 14 variables for YMgTl; α = 781.3(1), c = 477.84(8) pm, wR2 = 0.0640, BASF = 0.09(2), 425 F2 values, 15 variables for LaMgTl; α = 774.1(1), c = 473.75(7) pm, wR2 = 0.0405, 295 F2 values, 14 variables for CeMgTl; a = 760.3(1), c = 465.93(8) pm, wR2 = 0.0262, 287 F2 values, 14 variables for SmMgTl. The PrMgTl, NdMgTl, GdMgTl, TbMgTl, and DyMgTl structures have been analyzed using the Rietveld technique. The REMgTl structures contain two cystallographically independent thallium sites, both with tri-capped trigonal prismatic coordination: Tl1Mg3RE6 and Tl2Mg6RE3. Together the magnesium and thallium atoms form three-dimensional [MgTl] networks with Mg-Mg distances of 327 and Mg-Tl distances in the range 299 - 303 pm (data for CeMgTl)


Sign in / Sign up

Export Citation Format

Share Document