Asymptotic freedom in the early big bang and the isotropy of the cosmic microwave background

1980 ◽  
Vol 235 ◽  
pp. L1 ◽  
Author(s):  
F. W. Stecker
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koustav Konar ◽  
Kingshuk Bose ◽  
R. K. Paul

AbstractBlackbody radiation inversion is a mathematical process for the determination of probability distribution of temperature from measured radiated power spectrum. In this paper a simple and stable blackbody radiation inversion is achieved by using an analytical function with three determinable parameters for temperature distribution. This inversion technique is used to invert the blackbody radiation field of the cosmic microwave background, the remnant radiation of the hot big bang, to infer the temperature distribution of the generating medium. The salient features of this distribution are investigated and analysis of this distribution predicts the presence of distortion in the cosmic microwave background spectrum.


2011 ◽  
Vol 2 ◽  
pp. 67-70
Author(s):  
Krishna Raj Adhikari

School of thought is the theory of creation (theism) and school of thought deals with the random chance of evolution (atheism) about the origin of the universe and origin of the life. In the race of proof of the hypothesis, the theism has no scientific evidence and reliable proof, on the other hand atheism based on the scientific observable evidence. The latest theory of origin of the universe by Big Bang is more believable and supported by some scientific evidence such as Doppler effect on light, Hubble observation and result of the expanding the universe and observation of the cosmic microwave background radiation(CMBR). Paper briefly discussing about the origin of the universe and the Bing Bang.Key words: Big bang; Doppler; Cosmic microwave background radiation(CMBR)The Himalayan Physics Department of Physics, PN Campus, Pokhara Nepal Physical Society, Western Regional ChapterVol.2, No.2, May, 2011Page: 67-70Uploaded Date: 1 August, 2011


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 261
Author(s):  
Hartmut Traunmüller

In standard Big Bang cosmology, the universe expanded from a very dense, hot and opaque initial state. The light that was last scattered about 380,000 years later, when the universe had become transparent, has been redshifted and is now seen as thermal radiation with a temperature of 2.7 K, the cosmic microwave background (CMB). However, since light escapes faster than matter can move, it is prudent to ask how we, made of matter from this very source, can still see the light. In order for this to be possible, the light must take a return path of the right length. A curved return path is possible in spatially closed, balloon-like models, but in standard cosmology, the universe is “flat” rather than balloon-like, and it lacks a boundary surface that might function as a reflector. Under these premises, radiation that once filled the universe homogeneously cannot do so permanently after expansion, and we cannot see the last scattering event. It is shown that the traditional calculation of the CMB temperature is flawed and that light emitted by any source inside the Big Bang universe earlier than half its “conformal age”, also by distant galaxies, can only become visible to us via a return path. Although often advanced as the best evidence for a hot Big Bang, the CMB actually tells against a formerly smaller universe and so do the most distant galaxies. An attempt to invoke a model in which only time had a beginning, rather than spacetime, has also failed.


2019 ◽  
pp. 84-92
Author(s):  
Nicholas Mee

We now know the universe began with the Big Bang 13.8 billion years ago, but for several years debate raged between the supporters of the Big Bang theory led by George Gamow and supporters of the Steady State theory led by Fred Hoyle. Hoyle showed that the elements were synthesized in the stars, not in the Big Bang as Gamow believed. But Gamow’s colleagues Alpher and Herman predicted the existence of the cosmic microwave background (CMB) created immediately after the Big Bang. The CMB was discovered by Penzias and Wilson and this provided the crucial evidence that the Big Bang theory is correct. The CMB has since been studied in detail by a series of space probes.


2018 ◽  
Vol 168 ◽  
pp. 01014
Author(s):  
J. Choi ◽  
R. Génova-Santos ◽  
M. Hattori ◽  
M. Hazumi ◽  
H. Ishitsuka ◽  
...  

Our understanding of physics at very early Universe, as early as 10−35 s after the Big Bang, relies on the scenario known as the inflationary cosmology. Inflation predicts a particular polarization pattern in the cosmic microwave background, known as the B-mode yet the strength of such polarization pattern is extremely weak. To search for the B-mode of the polarization in the cosmic microwave background, we are constructing an off-axis rotating telescope to mitigate systematic effects as well as to maximize the sky coverage of the observation. We will discuss the present status of the GroundBIRD telescope.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 261
Author(s):  
Hartmut Traunmüller

In standard Big Bang cosmology, the universe expanded from a very dense, hot and opaque initial state. The light that was last scattered about 380,000 years later, when the universe had become transparent, has been redshifted and is now seen as thermal radiation with a temperature of 2.7 K, the cosmic microwave background (CMB). However, since light escapes faster than matter can move, it is prudent to ask how we, made of matter from this very source, can still see the light. In order for this to be possible, the light must take a return path of the right length. A curved return path is possible in spatially closed, balloon-like models, but in standard cosmology, the universe is “flat” rather than balloon-like, and it lacks a boundary surface that might function as a reflector. Under these premises, radiation that once filled the universe homogeneously cannot do so permanently after expansion, and we cannot see the last scattering event. It is shown that the traditional calculation of the CMB temperature is flawed and that light emitted by any source inside the Big Bang universe earlier than half its “conformal age”, also by distant galaxies, can only become visible to us via a return path. Although often advanced as the best evidence for a hot Big Bang, the CMB actually tells against a formerly smaller universe and so do the most distant galaxies. An attempt to invoke a model in which only time had a beginning, rather than spacetime, has also failed.


Sign in / Sign up

Export Citation Format

Share Document