Flower Structure, Development, and Systematics in Passifloraceae and in Abatia (Flacourtiaceae)

1999 ◽  
Vol 160 (1) ◽  
pp. 135-150 ◽  
Author(s):  
A. Bernhard
Author(s):  
Alexey А. Bezrodny ◽  
◽  
Van Tszin ◽  
Anatoly M. Korolyonok ◽  
◽  
...  

Polymer ◽  
1996 ◽  
Vol 37 (8) ◽  
pp. 1353-1361 ◽  
Author(s):  
Michael J. Elwell ◽  
Anthony J. Ryan ◽  
Henri J.M. Grünbauer ◽  
Henry C. Van Lieshout

2021 ◽  
Vol 174 ◽  
pp. 110973
Author(s):  
Fei Yang ◽  
Xianping Liu ◽  
Peiming Wang ◽  
Shunfeng Wang ◽  
Ian Robinson ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3783
Author(s):  
Jian-Qing Qiu ◽  
Huan-Qing Xie ◽  
Ya-Hao Wang ◽  
Lan Yu ◽  
Fang-Yuan Wang ◽  
...  

The removal of organic pollutants using green environmental photocatalytic degradation techniques urgently need high-performance catalysts. In this work, a facile one-step hydrothermal technique has been successfully applied to synthesize a Nb2O5 photocatalyst with uniform micro-flower structure for the degradation of methyl orange (MO) under UV irradiation. These nanocatalysts are characterized by transmission and scanning electron microscopies (TEM and SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) method, and UV-Vis diffuse reflectance spectroscopy (DRS). It is found that the prepared Nb2O5 micro-flowers presents a good crystal phases and consist of 3D hierarchical nanosheets with 400–500 nm in diameter. The surface area is as large as 48.6 m2 g−1. Importantly, the Nb2O5 micro-flowers exhibit superior catalytic activity up to 99.9% for the photodegradation of MO within 20 mins, which is about 60-fold and 4-fold larger than that of without catalysts (W/O) and commercial TiO2 (P25) sample, respectively. This excellent performance may be attributed to 3D porous structure with abundant catalytic active sites.


Sign in / Sign up

Export Citation Format

Share Document