scholarly journals H2and CO Emission from Disks around T Tauri and Herbig Ae Pre–Main‐Sequence Stars and from Debris Disks around Young Stars: Warm and Cold Circumstellar Gas

2001 ◽  
Vol 561 (2) ◽  
pp. 1074-1094 ◽  
Author(s):  
W. F. Thi ◽  
E. F. van Dishoeck ◽  
G. A. Blake ◽  
G. J. van Zadelhoff ◽  
J. Horn ◽  
...  
2015 ◽  
Vol 10 (S314) ◽  
pp. 191-192
Author(s):  
P. A. B. Galli ◽  
C. Bertout ◽  
R. Teixeira ◽  
C. Ducourant

AbstractIn a recent study, we derived individual distances for a sample of pre-main sequence stars that define the comoving association of young stars in the Lupus star-forming region. Here, we use these new distances to investigate the mass and age distributions of Lupus T Tauri stars and derive the average disk lifetime in the Lupus association based on an empirical disk model.


1999 ◽  
Vol 16 (3) ◽  
pp. 257-261 ◽  
Author(s):  
Eric E. Mamajek ◽  
Warrick A. Lawson ◽  
Eric D. Feigelson

AbstractA radio continuum survey of X-ray-identified weak-lined T Tauri stars (WTTs) in the newly-discovered η Chamaeleontis cluster has been completed using the Australia Telescope Compact Array (ATCA). The 10 known WTTs in the cluster form a unique sample of codistant late-type pre-main-sequence stars with ages of ~8 Myr and masses ranging from 0·1–1·0 M⊙. Our survey detected none of the 10 X-ray-emitting WTTs with 3σ sensitivity limits at 4·8 and 8·6 GHz (6·2 and 3·5 cm) of typically 0·4 mJy, corresponding to a radio luminosity of 4·5 ×1015 erg Hz−1 s−1. Rotation periods for these stars indicate that they are not, as a group, fast-rotating stars. The non-detection in the radio bands supports the findings of other radio surveys of inhomogeneous samples of young stars, where radio emission is fairly common (10–30%) among very young T Tauri stars across all late spectral types, but confined to rapidly-rotating F-G-K stars amongst older zero-age main sequence stars. Rotation, more than youth, appears to be the key to radio emission in young stars.


2019 ◽  
Vol 627 ◽  
pp. A135 ◽  
Author(s):  
A. Bhardwaj ◽  
N. Panwar ◽  
G. J. Herczeg ◽  
W. P. Chen ◽  
H. P. Singh

Context. Pre-main-sequence variability characteristics can be used to probe the physical processes leading to the formation and initial evolution of both stars and planets. Aims. The photometric variability of pre-main-sequence stars is studied at optical wavelengths to explore star–disk interactions, accretion, spots, and other physical mechanisms associated with young stellar objects. Methods. We observed a field of 16′ × 16′ in the star-forming region Pelican Nebula (IC 5070) at BVRI wavelengths for 90 nights spread over one year in 2012−2013. More than 250 epochs in the VRI bands are used to identify and classify variables up to V ∼ 21 mag. Their physical association with the cluster IC 5070 is established based on the parallaxes and proper motions from the Gaia second data release (DR2). Multiwavelength photometric data are used to estimate physical parameters based on the isochrone fitting and spectral energy distributions. Results. We present a catalog of optical time-series photometry with periods, mean magnitudes, and classifications for 95 variable stars including 67 pre-main-sequence variables towards star-forming region IC 5070. The pre-main-sequence variables are further classified as candidate classical T Tauri and weak-line T Tauri stars based on their light curve variations and the locations on the color-color and color-magnitude diagrams using optical and infrared data together with Gaia DR2 astrometry. Classical T Tauri stars display variability amplitudes up to three times the maximum fluctuation in disk-free weak-line T Tauri stars, which show strong periodic variations. Short-term variability is missed in our photometry within single nights. Several classical T Tauri stars display long-lasting (≥10 days) single or multiple fading and brightening events of up to two magnitudes at optical wavelengths. The typical mass and age of the pre-main-sequence variables from the isochrone fitting and spectral energy distributions are estimated to be ≤1 M⊙ and ∼2 Myr, respectively. We do not find any correlation between the optical amplitudes or periods with the physical parameters (mass and age) of pre-main-sequence stars. Conclusions. The low-mass pre-main-sequence stars in the Pelican Nebula region display distinct variability and color trends and nearly 30% of the variables exhibit strong periodic signatures attributed to cold spot modulations. In the case of accretion bursts and extinction events, the average amplitudes are larger than one magnitude at optical wavelengths. These optical magnitude fluctuations are stable on a timescale of one year.


1981 ◽  
Vol 251 ◽  
pp. 113 ◽  
Author(s):  
M. S. Giampapa ◽  
N. Calvet ◽  
C. L. Imhoff ◽  
L. V. Kuhi

2007 ◽  
Vol 3 (S243) ◽  
pp. 231-240 ◽  
Author(s):  
Jérôme Bouvier

AbstractStar-disk interaction is thought to drive the angular momentum evolution of young stars. In this review, I present the latest results obtained on the rotational properties of low mass and very low mass pre-main sequence stars. I discuss the evidence for extremely efficient angular momentum removal over the first few Myr of pre-main sequence evolution and describe recent results that support an accretion-driven braking mechanism. Angular momentum evolution models are presented and their implication for accretion disk lifetimes discussed.


2010 ◽  
Vol 6 (S276) ◽  
pp. 54-59
Author(s):  
Amaya Moro-Martín

AbstractMain sequence stars are commonly surrounded by disks of dust. From lifetime arguments, it is inferred that the dust particles are not primordial but originate from the collision of planetesimals, similar to the asteroids, comets and KBOs in our Solar system. The presence of these debris disks around stars with a wide range of masses, luminosities, and metallicities, with and without binary companions, is evidence that planetesimal formation is a robust process that can take place under a wide range of conditions. Debris disks can help us learn about the formation, evolution and diversity of planetary systems.


2010 ◽  
Vol 6 (S275) ◽  
pp. 404-405
Author(s):  
María V. del Valle ◽  
Gustavo E. Romero

AbstractT Tauri stars are low mass, pre-main sequence stars. These objects are surrounded by an accretion disk and present strong magnetic activity. T Tauri stars are copious emitters of X-ray emission which belong to powerful magnetic reconnection events. Strong magnetospheric shocks are likely outcome of massive reconnection. Such shocks can accelerate particles up to relativistic energies through Fermi mechanism. We present a model for the high-energy radiation produced in the environment of T Tauri stars. We aim at determining whether this emission is detectable. If so, the T Tauri stars should be very nearby.


2018 ◽  
Vol 14 (S345) ◽  
pp. 318-319
Author(s):  
M. Mugrauer ◽  
C. Ginski ◽  
N. Vogt ◽  
R. Neuhäuser

AbstractWe carried out a high contrast imaging search for (sub)stellar companions of young pre-main sequence stars in the Lupus star forming region. For this project we utilized NACO/ESO-VLT, operated at the Paranal observatory. On this poster, we presented the results of this survey. In several observing campaigns we could obtain diffraction limited deep IR imaging data and detected faint co-moving companions around our targets, whose astro- and photometry was determined in all observing epochs. The co-moving companions found in our survey exhibit angular separations in the range between about 0.1 and a few arcsecs, i.e. projected separations between about 10 and a few hundreds of au, at the average distance of our targets of about 140 pc. Beside several new binary and triple star systems, whose multiplicity was revealed in this survey, also faint co-moving companions in the substellar mass regime could be identified close to some of our targets.


1992 ◽  
Vol 135 ◽  
pp. 21-29 ◽  
Author(s):  
Ch. Leinert ◽  
N. Weitzel ◽  
M. Haas ◽  
R. Lenzen ◽  
H. Zinnecker ◽  
...  

AbstractWe surveyed all stars in Taurus (3h 45m < α < 4h 15m, 15° < δ < 35°) for multiplicity which are contained in the Herbig-Bell catalogue of young stars and have a 2 micron brightness of K ≤ 9.5 mag. This sample consists of 106 stellar systems (single or multiple), of which 43 are double or multiple according to the criteria of our survey, i.e. with separations of ≈0″.2 ≤ d ≤ 10″. Of these, 23 binaries are new detections found in this survey. The resulting degree of multiplicity, 43/106 = 41±6%, is higher than found for main-sequence stars. Provided that the period distribution is the same for young stars as on the main sequence, our result implies that the vast majority of stars are born in binary or multiple systems.


1998 ◽  
Vol 188 ◽  
pp. 230-231
Author(s):  
M. Nakano

The signs of the active star formation in the Orion region are mainly found in the direction of the two giant molecular clouds - Ori A and Ori B -. Recent objective prism survey in the Orion region shows large number of Hα emission-line stars distributed outside of the giant molecular clouds (Nakano et al., 1995). Many weak-lined T Tauri star candidates are also discovered by the discrimination analysis of the X-ray sources found in the ROSAT all sky survey (RASS) (Sterzik et al., 1995). Although such huge number of pre-main sequence stars outside of the molecular cloud was not expected, their nature is still in controversial (Neuhäuser, 1997). To know the X-ray properties of these sources in the Orion region, we have carried out the ASCA observations.


Sign in / Sign up

Export Citation Format

Share Document