scholarly journals Chemical Evolution of the Circumstellar Envelopes of Carbon‐rich Post–Asymptotic Giant Branch Objects

2002 ◽  
Vol 577 (2) ◽  
pp. 961-973 ◽  
Author(s):  
F. Herpin ◽  
J. R. Goicoechea ◽  
J. R. Pardo ◽  
J. Cernicharo
Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 233
Author(s):  
Ambra Nanni ◽  
Sergio Cristallo ◽  
Jacco Th. van Loon ◽  
Martin A. T. Groenewegen

Background: Most of the stars in the Universe will end their evolution by losing their envelope during the thermally pulsing asymptotic giant branch (TP-AGB) phase, enriching the interstellar medium of galaxies with heavy elements, partially condensed into dust grains formed in their extended circumstellar envelopes. Among these stars, carbon-rich TP-AGB stars (C-stars) are particularly relevant for the chemical enrichment of galaxies. We here investigated the role of the metallicity in the dust formation process from a theoretical viewpoint. Methods: We coupled an up-to-date description of dust growth and dust-driven wind, which included the time-averaged effect of shocks, with FRUITY stellar evolutionary tracks. We compared our predictions with observations of C-stars in our Galaxy, in the Magellanic Clouds (LMC and SMC) and in the Galactic Halo, characterised by metallicity between solar and 1/10 of solar. Results: Our models explained the variation of the gas and dust content around C-stars derived from the IRS Spitzer spectra. The wind speed of the C-stars at varying metallicity was well reproduced by our description. We predicted the wind speed at metallicity down to 1/10 of solar in a wide range of mass-loss rates.


2012 ◽  
Vol 8 (S287) ◽  
pp. 217-224 ◽  
Author(s):  
J.-F. Desmurs

AbstractThis contribution reviews recent observational results concerning astronomical masers toward post-AGB objects with a special attention to water fountain sources and the prototypical source OH 231.8+4.2. These sources represent a short transition phase in the evolution between circumstellar envelopes around asymptotic giant branch stars and planetary nebulae. The main masing species are considered and key results are summarized.


1996 ◽  
Vol 13 (2) ◽  
pp. 185-186
Author(s):  
Jessica M. Chapman

Radio emission at centimetre and millimetre wavelengths provides a powerful tool for studying the circumstellar envelopes of evolved stars. These include stars on the asymptotic giant branch (AGB), post-AGB stars and a small number of massive M-type supergiant stars. The AGB stars and M-type supergiants are characterised by extremely high mass-loss rates. The mass loss in such an evolved star is driven by radiation pressure acting on grains which form in the outer stellar atmosphere. The grains are accelerated outwards and transfer momentum to the gas through grain–gas collisions. The outflowing dust and gas thus form an expanding circumstellar envelope through which matter flows from the star to the interstellar medium, at a typical velocity of 15 km s−1. For a recent review of circumstellar mass loss see Chapman, Habing & Killeen (1995).


2020 ◽  
Vol 10 (1) ◽  
pp. 7-11
Author(s):  
B. Etmański ◽  
M. Schmidt ◽  
R. Szczerba

The HIFI instrument on board of the Herschel Space Observatory (HSO) has been very successful in detecting molecular lines from the circumstellar envelopes around evolved stars, like massive red supergiants, Asymptotic Giant Branch (AGB) and post-AGB stars, as well as the planetary nebulae. Among others, ammonia have been found in the circumstellar envelopes of C-rich AGB stars in amounts that significantly exceeded the theoretical predictions for C-rich stars. Few scenarios have been proposed to resolve this problem: formation of ammonia behind the shock front and photochemical processes in the inner part of the envelope partly transparent to UV background radiation due to the clumpy structure of the gas and formation of ammonia on dust grains. Careful analysis of observations may help to put the constraints on one or another mechanism of ammonia formation. Here, we present results of the non-LTE radiative transfer modeling of ammonia transitions including the crucial process of radiative pumping via the v2=1 vibrational band (at ∼10 μm) for V Cyg. Only the ground-based ammonia transition NH3 J = 10-00 at 572.5 GHz has been observed by HIFI. Therefore, to determine the abundance of ammonia we estimate the photodissociation radius of NH3 using chemical model of the envelope consistent with the dust grain properties concluded from the spectral energy distribution.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 164-165
Author(s):  
Carolyn Doherty ◽  
John Lattanzio ◽  
George Angelou ◽  
Simon W. Campbell ◽  
Ross Church ◽  
...  

AbstractThe Monχey project will provide a large and homogeneous set of stellar yields for the low- and intermediate- mass stars and has applications particularly to galactic chemical evolution modelling. We describe our detailed grid of stellar evolutionary models and corresponding nucleosynthetic yields for stars of initial mass 0.8 M⊙ up to the limit for core collapse supernova (CC-SN) ≈ 10 M⊙. Our study covers a broad range of metallicities, ranging from the first, primordial stars (Z = 0) to those of super-solar metallicity (Z = 0.04). The models are evolved from the zero-age main-sequence until the end of the asymptotic giant branch (AGB) and the nucleosynthesis calculations include all elements from H to Bi. A major innovation of our work is the first complete grid of heavy element nucleosynthetic predictions for primordial AGB stars as well as the inclusion of extra-mixing processes (in this case thermohaline) during the red giant branch. We provide a broad overview of our results with implications for galactic chemical evolution as well as highlight interesting results such as heavy element production in dredge-out events of super-AGB stars. We briefly introduce our forthcoming web-based database which provides the evolutionary tracks, structural properties, internal/surface nucleosynthetic compositions and stellar yields. Our web interface includes user- driven plotting capabilities with output available in a range of formats. Our nucleosynthetic results will be available for further use in post processing calculations for dust production yields.


2016 ◽  
Vol 12 (S323) ◽  
pp. 199-206
Author(s):  
Hyosun Kim

AbstractA consensus has grown in the past few decades that binarity is key to understanding the morphological diversities of the circumstellar envelopes (CSEs) surrounding stars in the Asymptotic Giant Branch (AGB) to Planetary Nebula (PN) phase. The possible roles of binaries in their shaping have, however, yet to be confirmed. Meanwhile, recurrent patterns are often found in the CSEs of AGB stars and the outer halos of PNe, providing a fossil record of the mass loss during the AGB phase. In this regard, recent molecular line observations using interferometric facilities have revealed the spatio-kinematics of such patterns. Numerical simulations of binary interactions producing spiral-shells have been extensively developed, revealing new probes for extracting the stellar and orbital properties from these patterns. I review recent theoretical and observational investigations on the circumstellar spiral-shell patterns and discuss their implications in linking binary properties to the asymmetric ejection events in the post-AGB phase.


2020 ◽  
Vol 641 ◽  
pp. A103
Author(s):  
P. Ventura ◽  
F. Dell’Agli ◽  
M. Lugaro ◽  
D. Romano ◽  
M. Tailo ◽  
...  

Context. Stars evolving through the asymptotic giant branch (AGB) phase provide significant feedback to their host system, which is both gas enriched in nuclear-burning products, and dust formed in their winds, which they eject into the interstellar medium. Therefore, AGB stars are an essential ingredient for the chemical evolution of the Milky Way and other galaxies. Aims. We study AGB models with super-solar metallicities to complete our vast database, so far extending from metal-poor to solar-chemical compositions. We provide chemical yields for masses in the range 1−8 M⊙ and metallicities Z = 0.03 and Z = 0.04. We also study dust production in this metallicity domain. Methods. We calculated the evolutionary sequences from the pre-main sequence through the whole AGB phase. We followed the variation of the surface chemical composition to calculate the chemical yields of the various species and model dust formation in the winds to determine the dust production rate and the total dust mass produced by each star during the AGB phase. Results. The physical and chemical evolution of the star is sensitive to the initial mass: M >  3 M⊙ stars experience hot bottom burning, whereas the surface chemistry of the lower mass counterparts is altered only by third dredge-up. The carbon-star phase is reached by 2.5−3.5 M⊙ stars of metallicity Z = 0.03, whereas all the Z = 0.04 stars (except the 2.5 M⊙) remain O-rich for the whole AGB phase. Most of the dust produced by metal-rich AGBs is in the form of silicate particles. The total mass of dust produced increases with the mass of the star, reaching ∼0.012 M⊙ for 8 M⊙ stars.


Sign in / Sign up

Export Citation Format

Share Document