scholarly journals Small Magellanic Cloud–Type Interstellar Dust in the Milky Way

2003 ◽  
Vol 598 (1) ◽  
pp. 369-374 ◽  
Author(s):  
Lynne A. Valencic ◽  
Geoffrey C. Clayton ◽  
Karl D. Gordon ◽  
Tracy L. Smith
1991 ◽  
Vol 148 ◽  
pp. 401-406 ◽  
Author(s):  
Klaas S. De Boer

General aspects of ISM studies using absorption line studies are given and available data are reviewed. Topics are: galactic foreground gas, individual fields in the Magellanic Clouds (MCs) and MC coronae. Overall investigations are discussed. It is demonstrated that the metals in the gas of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) are a factor of 3 and 10, respectively, in abundance below solar levels. The depletion pattern in the LMC is similar to that of the Milky Way.


2000 ◽  
Vol 129 (1) ◽  
pp. 147-157 ◽  
Author(s):  
Geoffrey C. Clayton ◽  
Karl D. Gordon ◽  
Michael J. Wolff

2021 ◽  
Vol 34 ◽  
pp. 70-73
Author(s):  
V. Yushchenko ◽  
V. Gopka ◽  
A.V. Yushchenko ◽  
A. Shavrina ◽  
Ya. Pavlenkо ◽  
...  

This paper presents a study of radioactive  actinium in the atmospheres of stars located in galaxies with different chemical evolution history – namely, Przybylski's Star (HD 101065) in the Milky Way and the red supergiant PMMR27 in the Small Magellanic Cloud; it also reports the findings of the previous research of the red supergiant RM 1-667 in the Large Magellanic Cloud and the red giant BL138 in the Fornax dwarf spheroidal galaxy. The actinium abundance is close to that of uranium in the atmospheres of certain stars in the Milky Way’s halo and in the atmosphere of Arcturus. The following actinium abundances have been obtained (in a scale of lg N(H) = 12): for the red supergiants PMMR27 and RM 1- 667 lg N(Ac) = -1.7 and lg N(Ac) = -1.3, respectively, and for the red giant BL138 lg N(Ac) = -1.6. The actinium abundance in the atmosphere of Przybylski's Star (HD 101065) is lg N(Ac) = `0.94±0.09, which is more than two orders of magnitude higher than those in the atmospheres of the other studied stars.


Author(s):  
Jacob Ward ◽  
Joana Oliveira ◽  
Jacco van Loon ◽  
Marta Sewilo

AbstractAt distances of ~50 kpc and ~60 kpc for the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) respectively the Magellanic Clouds present us with a unique opportunity to study star formation in environments outside our own galaxy. Through Spitzer and Herschel photometry and spectroscopy, samples of Young Stellar Objects (YSOs) have been selected and spectroscpically confirmed in the Magellanic Clouds. Here we present some of the key results of our SINFONI K-band observations towards massive YSOs in the Magellanic Clouds. We resolve a number of Spitzer sources into multiple, previously unresolved, components and our analysis of emission lines suggest higher accretion rates and different disc properties compared with massive YSOs in the Milky Way.


2006 ◽  
Vol 2 (S237) ◽  
pp. 199-203
Author(s):  
E. Sabbi ◽  
A. Nota ◽  
M. Sirianni ◽  
L. R. Carlson ◽  
M. Tosi ◽  
...  

AbstractWe recently launched a comprehensive ground based (ESO/VLT/NTT) and space (HST & SST) study of the present and past star formation in the Small Magellanic Cloud (SMC), in clusters and in the field, with the goal of understanding how star and cluster formation occur and propagate in an environment of low metallicity, with a gas and dust content that is significantly lower than in the Milky Way. In this paper, we present some preliminary results of the “young cluster” program, where we acquired deep F555W (~V), and F814W (~I) HST/ACS images of the four young and massive SMC star clusters: NGC 346, NGC 602, NGC 299, and NGC 376.


2017 ◽  
Vol 13 (S334) ◽  
pp. 394-395
Author(s):  
P. Zivick ◽  
N. Kallivayalil ◽  
S. Linden ◽  
T. Fritz ◽  
G. Besla ◽  
...  

AbstractAs new work on the proper motions (PMs) of the Large Magellanic Cloud (LMC) has come out, our view of the history of the Magellanic Clouds has evolved. We now believe they are on their first infall into the Milky Way (MW), having been tidally bound at the start of infall (though not necessarily now). Combining these observations with initial PMs of the Small Magellanic Cloud (SMC) suggests a new formation mechanism of the Magellanic Stream through the stripping of material from the SMC. However, large uncertainties remain in the exact mass of the LMC. We present a measurement of the systemic proper motions of the SMC from astrometry with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST), covering a ~3 year baseline of 30 fields with background QSOs. We find these motions to be μW = −0.82 ± 0.06 mas/yr and μN = −1.23 ± 0.07 mas/yr. Combining these measurements with previous efforts in studying the Clouds will help constrain their interactions with each other and the MW, including the mass of the LMC and the MW, as well as provide new insight into the internal dynamics of the SMC.


1984 ◽  
Vol 108 ◽  
pp. 399-400
Author(s):  
M. Rubio ◽  
R. Cohen ◽  
J. Montani

The dwarf Magellanic irregular galaxies apparently have a very low molecular content compared to the Milky Way. In the LMC, molecular clouds are fairly common, but the ratio of molecular to atomic gas is at least 5 times lower than in the Galaxy (Cohen et al. 1984). Elmegreen et al. (1980) searched for CO in 6 dwarf galaxies and failed to detect any emission even though their sensitivity was adequate to detect galactic giant molecular clouds placed at the distance of these galaxies. Israel (1984) observed the J=2→1 transition of CO at 15 points in the Small Magellanic Cloud and detected CO emission from five of them, but at a level two to six times lower than typical galactic values.


2021 ◽  
Vol 507 (3) ◽  
pp. 4211-4240 ◽  
Author(s):  
Christoph Engler ◽  
Annalisa Pillepich ◽  
Anna Pasquali ◽  
Dylan Nelson ◽  
Vicente Rodriguez-Gomez ◽  
...  

ABSTRACT We study the abundance of satellite galaxies around 198 Milky Way- (MW) and M31-like hosts in TNG50, the final installment in the IllustrisTNG suite of cosmological magnetohydrodynamical simulations. MW/M31-like analogues are defined as discy galaxies with stellar masses of $M_* = 10^{10.5 - 11.2}~\rm {M}_\odot$ in relative isolation at z = 0. By defining satellites as galaxies with $M_* \ge 5\times 10^{6}~\rm {M}_\odot$ within $300~\rm {kpc}$ (3D) of their host, we find a remarkable level of diversity and host-to-host scatter across individual host galaxies. The median TNG50 MW/M31-like galaxy hosts a total of $5^{+6}_{-3}$ satellites with $M_* \ge 8 \times 10^6~\rm {M}_\odot$, reaching up to $M_* \sim 10^{8.5^{+0.9}_{-1.1}}~\rm {M}_\odot$. Even at a fixed host halo mass of $10^{12}~\rm {M}_\odot$, the total number of satellites ranges between 0 and 11. The abundance of subhaloes with $M_\rm {dyn} \ge 5 \times 10^7~\rm {M}_\odot$ is larger by a factor of more than 10. The number of all satellites (subhaloes) ever accreted is larger by a factor of 4–5 (3–5) than those surviving to z = 0. Hosts with larger galaxy stellar mass, brighter K-band luminosity, more recent halo assembly, and – most significantly – larger total halo mass typically have a larger number of surviving satellites. The satellite abundances around TNG50 MW/M31-like galaxies are consistent with those of mass-matched hosts from observational surveys (e.g. SAGA) and previous simulations (e.g. Latte). While the observed MW satellite system falls within the TNG50 scatter across all stellar masses considered, M31 is slightly more satellite-rich than our 1σ scatter but well consistent with the high-mass end of the TNG50 sample. We find a handful of systems with both a Large and a Small Magellanic Cloud-like satellite. There is no missing satellites problem according to TNG50.


Sign in / Sign up

Export Citation Format

Share Document