Jet Velocity in SS 433: Its Anticorrelation with Precession-Cone Angle and Dependence on Orbital Phase

2005 ◽  
Vol 622 (2) ◽  
pp. L129-L132 ◽  
Author(s):  
Katherine M. Blundell ◽  
Michael G. Bowler
Keyword(s):  
Ss 433 ◽  
1986 ◽  
Vol 91 ◽  
pp. 118 ◽  
Author(s):  
G. H. Newsom ◽  
G. W., II Collins
Keyword(s):  

2020 ◽  
Vol 640 ◽  
pp. A96
Author(s):  
Paolo Picchi ◽  
Steven N. Shore ◽  
Eamonn J. Harvey ◽  
Andrei Berdyugin

Aims. Our aim is to study the mass transfer, accretion environment, and wind outflows in the SS 433 system, concentrating on the so-called stationary lines. Methods. We used archival high-resolution (X-shooter) and low-resolution (EMMI) optical spectra, new optical multi-filter polarimetry, and low-resolution optical spectra (Liverpool Telescope), spanning an interval of a decade and a broad range of precessional and orbital phases, to derive the dynamical properties of the system. Results. Using optical interstellar absorption lines and H I 21 cm profiles, we derive E(B − V) = 0.86 ± 0.10, with an upper limit of E(B − V) = 1.8 ± 0.1 based on optical Diffuse Interstellar Bands. We obtain revised values for the ultraviolet and U band polarizations and polarization angles (PA), based on a new calibrator star at nearly the same distance as SS 433 that corrects the published measurement and yields the same PA as the optical. The polarization wavelength dependence is consistent with optical-dominating electron scattering with a Rayleigh component in U and the UV filters. No significant phase modulation was found for PA while there is significant variability in the polarization level. We fortuitously caught a flare event; no polarization changes were observed but we confirm the previously reported associated emission line variations. Studying profile modulation of multiple lines of H I, He I, O I, Na I, Si II, Ca II, Fe II with precessional and orbital phase, we derive properties for the accretion disk and present evidence for a strong disk wind, extending published results. Using transition-dependent systemic velocities, we probe the velocity gradient of the wind, and demonstrate that it is also variable on timescales unrelated to the orbit. Using the rotational velocity, around 140 ± 20 km s−1, a redetermined mass ratio q = 0.37 ± 0.04, and masses MX = 4.2 ± 0.4 M⊙, MA = 11.3 ± 0.6 M⊙, the radius of the A star fills – or slightly overfills – its Roche surface. We devote particular attention to the O I 7772 Å and 8446 Å lines, finding that they show different but related orbital and precessional modulation and there is no evidence for a circumbinary component. The spectral line profile variability can, in general, be understood with an ionization stratified outflow predicted by thermal wind modeling, modulated by different lines of sight through the disk produced by its precession. The wind can also account for an extended equatorial structure detected at long wavelength.


Galaxies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 46
Author(s):  
Michael Bowler

The microquasar SS 433 exhibits in Hα intermittent flares. A sequence of observations made in 2004 showed flaring Doppler shifted to both the red and the blue simultaneously. The mean shifts varied from day to day, following the orbital phase of the compact object. At the time, this behaviour was interpreted as indicating an origin in the outer rim of the accretion disk. A new analysis of these old data, presented in this paper, shows that the flares are not eclipsed by the Companion that eclipses the photosphere surrounding the compact object. They are therefore not intermittent sightings of an accretion disk. The alternative explanation is plasma expelled through the L2 point, following the phase of the orbit as it invades the space beyond the system. That space has been mapped with comparatively recent GRAVITY observations of a similar flare in Brγ, indeed revealing a strong rotation component.


1979 ◽  
Vol 46 ◽  
pp. 371-384 ◽  
Author(s):  
J.B. Hearnshaw

RSCVn stars are fully detached binary stars which show intrinsic small amplitude (up to 0.3 amplitude peak-to-peak) light variations, as well as, in most of the known cases, eclipses. The spectra are F to G, IV to V for the hotter component and usually KOIV for the cooler. They are also characterised by abnormally strong H and K emission from the cooler star, or, occasionally, from both components. The orbital and light curve periods are in the range 1 day to 2 weeks. An interesting feature is the migration of the light variations to earlier orbital phase, as the light variation period is shorter than the orbital period by a few parts in 10+4to a few parts in 10+3.


2020 ◽  
Vol 11 (1) ◽  
pp. 147
Author(s):  
Zhenye Sun ◽  
Weijun Zhu ◽  
Wenzhong Shen ◽  
Qiuhan Tao ◽  
Jiufa Cao ◽  
...  

In order to develop super-large wind turbines, new concepts, such as downwind load-alignment, are required. Additionally, segmented blade concepts are under investigation. As a simple example, the coned rotor needs be investigated. In this paper, different conning configurations, including special cones with three segments, are simulated and analyzed based on the DTU-10 MW reference rotor. It was found that the different force distributions of upwind and downwind coned configurations agreed well with the distributions of angle of attack, which were affected by the blade tip position and the cone angle. With the upstream coning of the blade tip, the blade sections suffered from stronger axial induction and a lower angle of attack. The downstream coning of the blade tip led to reverse variations. The cone angle determined the velocity and force projecting process from the axial to the normal direction, which also influenced the angle of attack and force, provided that correct inflow velocity decomposition occurred.


2021 ◽  
Vol 11 (16) ◽  
pp. 7223
Author(s):  
Dengyu Xiong ◽  
Mingliang Wu ◽  
Wei Xie ◽  
Rong Liu ◽  
Haifeng Luo

To address the problems of high damage rate, low seeding accuracy, and poor seeding generally in the seeding process, a general-purpose seeding device was designed in this study based on the principle of mechanical pneumatic combined seeding. The air-blowing-type cleaning and seed unloading of the device laid the conditions for precise seeding and flexible seeding. In addition, single-factor experiments were performed on seeds (e.g., soybeans, corn, and rape-seeds) with different particle sizes and shapes to verify the general properties of the seed metering device. A multi-factor response surface optimization experiment was performed by applying soybean seeds as the test object to achieve the optimal performance parameters of the seed metering device. At a seed-clearing air velocity of 16.7 m/s, a seed feeding drum speed of 13.7 r/min, and a hole cone angle of 35.6°, corresponding to the optimal performance index, the qualified index, the replay index, and the missed index reached 97.94%, 0.03%, and 2.03%, respectively. The verification test results are consistent with the optimized ones. As indicated from the results, the seed metering device exhibits good general properties, low damage rate, great precision, and high efficiency; it is capable of meeting general seeding operations of different crop seeds and technically supporting for the reliability and versatility of the seeder.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 286
Author(s):  
Ashfaq Ali ◽  
Naveed Ullah ◽  
Asim Ahmad Riaz ◽  
Muhammad Zeeshan Zahir ◽  
Zuhaib Ali Khan ◽  
...  

Quartz Tuning Fork (QTF) based sensors are used for Scanning Probe Microscopes (SPM), in particular for near-field scanning optical microscopy. Highly sharp Tungsten (W) tips with larger cone angles and less tip diameter are critical for SPM instead of platinum and iridium (Pt/Ir) tips due to their high-quality factor, conductivity, mechanical stability, durability and production at low cost. Tungsten is chosen for its ease of electrochemical etching, yielding high-aspect ratio, sharp tips with tens of nanometer end diameters, while using simple etching circuits and basic electrolyte chemistry. Moreover, the resolution of the SPM images is observed to be associated with the cone angle of the SPM tip, therefore Atomic-Resolution Imaging is obtained with greater cone angles. Here, the goal is to chemically etch W to the smallest possible tip apex diameters. Tips with greater cone angles are produced by the custom etching procedures, which have proved superior in producing high quality tips. Though various methods are developed for the electrochemical etching of W wire, with a range of applications from scanning tunneling microscopy (SPM) to electron sources of scanning electron microscopes, but the basic chemical etching methods need to be optimized for reproducibility, controlling cone angle and tip sharpness that causes problems for the end users. In this research work, comprehensive experiments are carried out for the production of tips from 0.4 mm tungsten wire by three different electrochemical etching techniques, that is, Alternating Current (AC) etching, Meniscus etching and Direct Current (DC) etching. Consequently, sharp and high cone angle tips are obtained with required properties where the results of the W etching are analyzed, with optical microscope, and then with field emission scanning electron microscopy (FE-SEM). Similarly, effects of varying applied voltages and concentration of NaOH solution with comparison among the produced tips are investigated by measuring their cone angle and tip diameter. Moreover, oxidation and impurities, that is, removal of contamination and etching parameters are also studied in this research work. A method has been tested to minimize the oxidation on the surface and the tips were characterized with scanning electron microscope (SEM).


Sign in / Sign up

Export Citation Format

Share Document